Нотация и семантика языка UML
Методология объектно-ориентированного программирования
Методология объектно-ориентированного программирования пришла на смену процедурной или алгоритмической организации структуры программного кода, когда стало очевидно, что традиционные методы процедурного программирования не способны справиться ни с растущей сложностью программ и их разработки, ни с повышением их надежности. Во второй половине 80-х годов возникла настоятельная потребность в новой методологии программирования, которая бы позволила решить весь этот комплекс проблем. Такой методологией стало объектно-ориентированное программирование (ООП).Объектно-ориентированное программирование (ООП, Object-Oriented Programming) - совокупность принципов, технологий , а также инструментальных средств для создания программных систем на основе архитектуры взаимодействия объектов.
Распространение методологии ООП связано с процессом разработки программ. В частности, процедурно-ориентированная декомпозиция программ уступила место объектно-ориентированной, при которой в качестве отдельных структурных единиц программы рассматриваются не процедуры и функции, а классы и объекты с соответствующими свойствами и методами. Как следствие, программа перестала быть последовательностью предопределенных на этапе кодирования действий, а преобразовалась в событийно управляемую. Последнее обстоятельство доминирует и при разработке широкого круга современных приложений. В этом случае каждая программа представляет собой бесконечный цикл ожидания заранее определенных событий. Инициаторами событий могут быть другие программы или пользователи, а при наступлении отдельного события программа выходит из состояния ожидания и реагирует на него вполне адекватным образом.
Основные принципы ООП: абстракция, наследование, инкапсуляция и полиморфизм.
Абстракция (abstraction) - характеристика сущности, которая отличает ее от других сущностей. Абстракция определяет границу представления соответствующего элемента модели и применяется для определения фундаментальных понятий ООП, таких как класс и объект.
Класс представляет собой абстракцию совокупности реальных объектов, которые имеют общий набор свойств и обладают одинаковым поведением.
Объект в контексте ООП рассматривается как экземпляр соответствующего класса.
Объекты, которые не имеют идентичных свойств или не обладают одинаковым поведением, по определению, не могут быть отнесены к одному классу.
Классы можно организовать в виде иерархической структуры, которая по внешнему виду напоминает схему классификации в понятийной логике. Иерархия понятий строится следующим образом. В качестве наиболее общего понятия или категории берется понятие, имеющее наибольший объем и, соответственно, наименьшее содержание. Это самый высокий уровень абстракции для данной иерархии. Затем данное общее понятие конкретизируется, то есть уменьшается его объем и увеличивается содержание. Появляется менее общее понятие, которое на схеме иерархии будет расположено на уровень ниже исходного. Этот процесс конкретизации понятий может быть продолжен до тех пор, пока на самом нижнем уровне не будет получено понятие, дальнейшая конкретизация которого в данном контексте либо невозможна, либо нецелесообразна.
Принцип, в соответствии с которым знание о наиболее общей категории разрешается применять для более частной категории, называется наследованием.
Наследование тесно связано с иерархией классов, определяющей, какие классы следует считать наиболее абстрактными и общими по отношению к другим классам. При этом если общий или родительский класс (предок) обладает фиксированным набором свойств и поведением, то производный от него класс (потомок) должен содержать этот же набор свойств и подобное поведение, а также дополнительные, которые будут характеризовать уникальность полученного класса. В этом случае говорят, что производный класс наследует свойства и поведение родительского класса.
Для иллюстрации принципа наследования можно привести следующий пример. Общий класс "Компьютер". Он определяется как абстракция свойств и поведения всех, реально существующих электронных вычислительных машин. При этом общими свойствами класса "Компьютер" могут быть такие , как наличие процессора, оперативной памяти, устройств ввода и вывода информации.
Если в качестве производного рассмотреть класс "Персональный компьютер", то все выделенные выше свойства будет содержать и этот класс. Можно сказать, что класс "Персональный компьютер" наследует свойства родительского класса "Компьютер". Однако кроме перечисленных свойств классу-потомоку будут присущи дополнительные, например, наличие системного блока и материнской платы с разъемом для установки микропроцессора.
В свою очередь класс "Персональный компьютер" может быть классом-предком для других классов, в частности "Рабочая станция", "Сервер" и "Ноутбук". С этой точки зрения все указанные классы наследуют свойства родительского класса "Персональный компьютер", а возможно и переопределяют некоторые из них. Описанная выше текстовая информация о соотношении классов в данном примере обладает одним серьезным недостатком, а именно, отсутствием наглядности. В этой связи возникает вопрос: а возможно ли представить иерархию наследования классов в визуальной форме? В понятийной логике для изображения понятий используются окружности или прямоугольники. С помощью этой графической нотации, иерархию классов для рассмотренного примера можно представить в виде вложенных прямоугольников или окружностей, каждый из которых соответствует отдельному классу (рис. 1.1).

Рис. 1.1. Иерархия вложенности классов для примера общего класса "Компьютер"
Подобное изображение обладает серьезным недостатком. Из представленного рисунка не ясно, изображена ли на нем иерархия понятий или декомпозиция класса "Компьютер" на его составные части. Как будет показано далее, использование нотации UML позволяет устранить данную неопределенность посредством введения в рассмотрение двух различных отношений: обобщения и агрегации (Лекция 6).
Следующий принцип ООП - инкапсуляция. Инкапсуляция характеризует сокрытие отдельных деталей внутреннего устройства классов от внешних по отношению к нему объектов или пользователей.
Клиенту, взаимодействующему с объектом класса, необязательно знать, каким образом осуществлен тот или иной элемент класса. Конкретная реализация присущих классу свойств и методов, которые определяют его поведение, является собственным делом данного класса. Более того, отдельные свойства и методы класса могут быть невидимы за его пределами, это относится к базовой идее введения различных категорий видимости для элементов класса.
На примере с классом "Компьютер" нетрудно проиллюстрировать инкапсуляцию следующим образом. Основным субъектом, который взаимодействует с объектами этого класса, является пользователь. Вполне очевидно, что не каждый пользователь в совершенстве знает внутреннее устройство того или иного компьютера. К тому же, отдельные детали этого устройства сознательно скрыты в корпусе системного блока или монитора. А в случае нарушения работы компьютера, которое является причиной неадекватности его поведения, необходимый ремонт выполняет профессиональный специалист.
Инкапсуляция ведет свое происхождение от деления модулей в некоторых языках программирования на две части или секции: интерфейс и реализацию. При этом в интерфейсной секции модуля описываются все объявления функций и процедур, а возможно и типов данных, доступных за пределами модуля. Указанные процедуры и функции являются способами оказания услуг внешним клиентам. В другой секции модуля, называемой реализацией, содержится программный код, который определяет конкретные способы реализации объявленных в интерфейсной части процедур и функций.
Полиморфизм также один из основных принципов ООП. Под полиморфизмом (греч. Poly - много, morfos - форма) понимается свойство объектов принимать различные внешние формы в зависимости от обстоятельств. Применительно к ООП полиморфизм означает, что действия, выполняемые одноименными методами, могут различаться в зависимости от того, к какому из классов относится тот или иной метод.
К примеру, три объекта соответствующих классов: двигатель автомобиля, электрический свет в комнате и персональный компьютер.
Для каждого из них можно определить операцию выключить(). Однако результат выполнения этой операции будет отличаться для каждого из рассмотренных объектов. Так для двигателя автомобиля выполнение операции выключить() означает прекращение подачи топлива и его остановку. Выполнение операции выключить() для электрического света в комнате означает простой щелчок выключателя, после чего комната погружается в темноту. В последнем случае для персонального компьютера выполнение операции выключить() может быть причиной потери данных, если производится нерегламентированным образом.
Полиморфизм объектно-ориентированных языков связан с перегрузкой функций, но не тождествен ей. Важно иметь в виду, что имена методов и свойств тесно связаны с классами, в которых они описаны. Это обстоятельство обеспечивает определенную надежность работы программы, поскольку исключает случайное применение метода для решения несвойственной ему задачи.
Наиболее существенным обстоятельством в развитии методологии ООП явилось осознание того, что процесс написания программного кода может быть отделен от процесса проектирования структуры программы. Прежде, чем начать программирование классов, их свойств и методов, необходимо определить сами эти классы. Более того, нужно дать ответы на следующие вопросы: сколько и какие классы нужно определить для решения поставленной задачи, какие свойства и методы необходимы для придания классам требуемого поведения, а также установить взаимосвязи между классами. Эта совокупность задач не столько связана с написанием кода, сколько с общим анализом требований к будущей программе, а также с анализом конкретной предметной области, для которой разрабатывается программа. Все эти обстоятельства привели к появлению специальной методологии, получившей название методологии объектно-ориентированного анализа и проектирования (ООАП).
Объект в контексте ООП рассматривается как экземпляр соответствующего класса.
Объекты, которые не имеют идентичных свойств или не обладают одинаковым поведением, по определению, не могут быть отнесены к одному классу.
Классы можно организовать в виде иерархической структуры, которая по внешнему виду напоминает схему классификации в понятийной логике. Иерархия понятий строится следующим образом. В качестве наиболее общего понятия или категории берется понятие, имеющее наибольший объем и, соответственно, наименьшее содержание. Это самый высокий уровень абстракции для данной иерархии. Затем данное общее понятие конкретизируется, то есть уменьшается его объем и увеличивается содержание. Появляется менее общее понятие, которое на схеме иерархии будет расположено на уровень ниже исходного. Этот процесс конкретизации понятий может быть продолжен до тех пор, пока на самом нижнем уровне не будет получено понятие, дальнейшая конкретизация которого в данном контексте либо невозможна, либо нецелесообразна.
Принцип, в соответствии с которым знание о наиболее общей категории разрешается применять для более частной категории, называется наследованием.
Наследование тесно связано с иерархией классов, определяющей, какие классы следует считать наиболее абстрактными и общими по отношению к другим классам. При этом если общий или родительский класс (предок) обладает фиксированным набором свойств и поведением, то производный от него класс (потомок) должен содержать этот же набор свойств и подобное поведение, а также дополнительные, которые будут характеризовать уникальность полученного класса. В этом случае говорят, что производный класс наследует свойства и поведение родительского класса.
Для иллюстрации принципа наследования можно привести следующий пример. Общий класс "Компьютер". Он определяется как абстракция свойств и поведения всех, реально существующих электронных вычислительных машин. При этом общими свойствами класса "Компьютер" могут быть такие , как наличие процессора, оперативной памяти, устройств ввода и вывода информации.
Если в качестве производного рассмотреть класс "Персональный компьютер", то все выделенные выше свойства будет содержать и этот класс. Можно сказать, что класс "Персональный компьютер" наследует свойства родительского класса "Компьютер". Однако кроме перечисленных свойств классу-потомоку будут присущи дополнительные, например, наличие системного блока и материнской платы с разъемом для установки микропроцессора.
В свою очередь класс "Персональный компьютер" может быть классом-предком для других классов, в частности "Рабочая станция", "Сервер" и "Ноутбук". С этой точки зрения все указанные классы наследуют свойства родительского класса "Персональный компьютер", а возможно и переопределяют некоторые из них. Описанная выше текстовая информация о соотношении классов в данном примере обладает одним серьезным недостатком, а именно, отсутствием наглядности. В этой связи возникает вопрос: а возможно ли представить иерархию наследования классов в визуальной форме? В понятийной логике для изображения понятий используются окружности или прямоугольники. С помощью этой графической нотации, иерархию классов для рассмотренного примера можно представить в виде вложенных прямоугольников или окружностей, каждый из которых соответствует отдельному классу (рис. 1.1).

Рис. 1.1. Иерархия вложенности классов для примера общего класса "Компьютер"
Подобное изображение обладает серьезным недостатком. Из представленного рисунка не ясно, изображена ли на нем иерархия понятий или декомпозиция класса "Компьютер" на его составные части. Как будет показано далее, использование нотации UML позволяет устранить данную неопределенность посредством введения в рассмотрение двух различных отношений: обобщения и агрегации (Лекция 6).
Следующий принцип ООП - инкапсуляция. Инкапсуляция характеризует сокрытие отдельных деталей внутреннего устройства классов от внешних по отношению к нему объектов или пользователей.
Клиенту, взаимодействующему с объектом класса, необязательно знать, каким образом осуществлен тот или иной элемент класса. Конкретная реализация присущих классу свойств и методов, которые определяют его поведение, является собственным делом данного класса. Более того, отдельные свойства и методы класса могут быть невидимы за его пределами, это относится к базовой идее введения различных категорий видимости для элементов класса.
На примере с классом "Компьютер" нетрудно проиллюстрировать инкапсуляцию следующим образом. Основным субъектом, который взаимодействует с объектами этого класса, является пользователь. Вполне очевидно, что не каждый пользователь в совершенстве знает внутреннее устройство того или иного компьютера. К тому же, отдельные детали этого устройства сознательно скрыты в корпусе системного блока или монитора. А в случае нарушения работы компьютера, которое является причиной неадекватности его поведения, необходимый ремонт выполняет профессиональный специалист.
Инкапсуляция ведет свое происхождение от деления модулей в некоторых языках программирования на две части или секции: интерфейс и реализацию. При этом в интерфейсной секции модуля описываются все объявления функций и процедур, а возможно и типов данных, доступных за пределами модуля. Указанные процедуры и функции являются способами оказания услуг внешним клиентам. В другой секции модуля, называемой реализацией, содержится программный код, который определяет конкретные способы реализации объявленных в интерфейсной части процедур и функций.
Полиморфизм также один из основных принципов ООП. Под полиморфизмом (греч. Poly - много, morfos - форма) понимается свойство объектов принимать различные внешние формы в зависимости от обстоятельств. Применительно к ООП полиморфизм означает, что действия, выполняемые одноименными методами, могут различаться в зависимости от того, к какому из классов относится тот или иной метод.
К примеру, три объекта соответствующих классов: двигатель автомобиля, электрический свет в комнате и персональный компьютер.
Для каждого из них можно определить операцию выключить(). Однако результат выполнения этой операции будет отличаться для каждого из рассмотренных объектов. Так для двигателя автомобиля выполнение операции выключить() означает прекращение подачи топлива и его остановку. Выполнение операции выключить() для электрического света в комнате означает простой щелчок выключателя, после чего комната погружается в темноту. В последнем случае для персонального компьютера выполнение операции выключить() может быть причиной потери данных, если производится нерегламентированным образом.
Полиморфизм объектно-ориентированных языков связан с перегрузкой функций, но не тождествен ей. Важно иметь в виду, что имена методов и свойств тесно связаны с классами, в которых они описаны. Это обстоятельство обеспечивает определенную надежность работы программы, поскольку исключает случайное применение метода для решения несвойственной ему задачи.
Наиболее существенным обстоятельством в развитии методологии ООП явилось осознание того, что процесс написания программного кода может быть отделен от процесса проектирования структуры программы. Прежде, чем начать программирование классов, их свойств и методов, необходимо определить сами эти классы. Более того, нужно дать ответы на следующие вопросы: сколько и какие классы нужно определить для решения поставленной задачи, какие свойства и методы необходимы для придания классам требуемого поведения, а также установить взаимосвязи между классами. Эта совокупность задач не столько связана с написанием кода, сколько с общим анализом требований к будущей программе, а также с анализом конкретной предметной области, для которой разрабатывается программа. Все эти обстоятельства привели к появлению специальной методологии, получившей название методологии объектно-ориентированного анализа и проектирования (ООАП).
Основные этапы развития языка UML
Отдельные языки объектно-ориентированного моделирования начали появляться в середине 1970-х годов, когда различные исследователи и программисты предлагали свои подходы к ООАП. В период между 1989 -1994 гг. общее число наиболее известных языков моделирования возросло с 10 до более чем 50. Многие пользователи испытывали серьезные затруднения при выборе языка ООАП, поскольку ни один из них не удовлетворял всем требованиям, предъявляемым к построению моделей сложных систем. Принятие отдельных методик и графических нотаций в качестве стандартов (IDEF0, IDEF1X) не смогло изменить сложившуюся ситуацию непримиримой конкуренции между ними в начале 90-х годов, которая получила название "войны методов".К середине 1990-х некоторые методы были существенно улучшены и приобрели самостоятельное значение при решении различных задач ООАП. Наиболее известными в этот период становятся:
Каждый из этих методов был ориентирован на поддержку отдельных этапов ООАП. Например, метод OOSE содержал средства представления вариантов использования, которые имеют существенное значение на этапе анализа требований в процессе проектирования бизнес-приложений. Метод OMT-2 наиболее подходил для анализа процессов обработки данных в информационных системах. Метод Booch'93 нашел широкое применение на этапах проектирования и разработки различных программных систем.
История развития языка UML берет начало с октября 1994 года, когда Гради Буч и Джеймс Румбах из компании Rational Software Corporation начали работу по унификации методов Booch и OMT. Несмотря на то, что сами по себе эти методы были достаточно популярны, совместная работа была направлена на изучение всех известных объектно-ориентированных методов с целью объединения их достоинств.
При этом Г. Буч и Дж. Румбах сосредоточили усилия на полной унификации результатов своей работы. Проект так называемого унифицированного метода (Unified Method) версии 0.8 был подготовлен и опубликован в октябре 1995 года. Осенью того же года к ним присоединился А. Джекобсон, главный технолог компании Objectory AB (Швеция), с целью интеграции своего метода OOSE с двумя предыдущими.
В этот период поддержка разработки языка UML становится одной из целей консорциума OMG (Object Management Group), который был образован еще в 1989 году с целью разработки предложений по стандартизации объектных и компонентных технологий CORBA. В то время язык UML приобрел статус второго стратегического направления в работе OMG. Именно в OMG создается команда разработчиков под руководством Р. Соли, которая обеспечила дальнейшую работу по унификации и стандартизации языка UML. Усилия группы разработчиков, в которую входили также Г. Буч, Дж. Румбах и А. Джекобсон, привели к появлению первых документов, содержащих собственно описание языка UML версии 0.9 (июнь 1996 г.) и версии 0.91 (октябрь 1996 г.).
Тогда же некоторые компании и организации увидели в языке UML стратегический интерес для своего бизнеса. Компания Rational Software вместе с несколькими организациями, изъявившими желание выделить ресурсы для разработки строгого определения версии 1.0 языка UML, учредила консорциум партнеров UML, в который первоначально вошли такие фирмы, как Digital Equipment Corp., HP, i-Logix, Intellicorp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle, Rational Software, TI и Unisys. Эти компании обеспечили поддержку последующей работы по более точному определению нотации.
В январе 1997 года был опубликован документ с описанием языка UML 1.0, как начальный вариант ответа на запрос предложений RTP. Эта версия языка моделирования была достаточно хорошо определена, обеспечивала требуемую выразительность и мощность, предполагала решение широкого класса задач. В результате работы инициативной группы в составе OMG была предложена пересмотренная версия 1.1 языка UML.
Основное внимание при разработке языка UML 1.1 было уделено достижению большей ясности семантики по сравнению с UML 1.0, а также учету предложений новых партнеров. Эта версия языка была представлена на рассмотрение OMG, затем одобрена и принята в качестве стандарта OMG в ноябре 1997 года. История разработки и последующего развития языка UML графически представлена на рис. 1.4.

Рис. 1.4. История развития языка UML
На момент написания данного курса лекций текущей версией языка UML является версия 1.5, принятая консорциумом OMG в марте 2003 г. В августе-сентябре 2003 г. был опубликован проект языка UML 2.0, но эта версия до настоящего времени официально не принята. Единственное инструментальное средство из доступных автору на конец 2004 г., в котором реализована нотация проекта языка UML 2.0, - это CASE-средство Together 2005 компании Borland. Поскольку проект языка UML 2.0 вносит серьезные изменения в существующий стандарт языка UML 1.5, в Together 2005 реализована поддержка проектов обеих нотаций языка UML версий 1.4 и 2.0. По всей видимости, поддержка языка UML версий 1.4-1.5 сохранится и в новых CASE-средствах других разработчиков, в частности IBM Rational и Microsoft.
В настоящее время все вопросы дальнейшей разработки языка UML сконцентрированы в рамках консорциума OMG. При этом статус языка UML определен как открытый для всех предложений по его доработке и совершенствованию. Сам язык UML не является чьей-либо собственностью и не запатентован кем-либо, хотя указанный выше документ защищен законом об авторском праве. В тоже время аббревиатура UML, как и некоторые другие (OMG, CORBA, ORB), является торговой маркой их законных владельцев, о чем следует упомянуть в данном контексте.
На рынке CASE-средств представлены десятки программных инструментов, поддерживающих нотацию языка UML 1.4-1.5 и обеспечивающих интеграцию, включая прямую и обратную генерацию кода программ, с наиболее распространенными языками и средами программирования, такими как MS Visual C++, Java, Object Pascal/Delphi, Power Builder, MS Visual Basic, Forte, Ada, Smalltalk.
С каждым годом интерес к языку UML со стороны специалистов неуклонно возрастает. Язык UML повсеместно становится не только основой для разработки и реализации во многих перспективных инструментальных RAD-средcтвах, но и в CASE-средствах визуального и имитационного моделирования. Более того, заложенные в языке UML потенциальные возможности широко используются как для объектно-ориентированного моделирования систем, так и для документирования бизнес-процессов, а в более широком контексте - для представления знаний в интеллектуальных системах, которыми, по существу, станут перспективные сложные программно-технологические комплексы.
Канонические диаграммы языка UML
В рамках языка UML все представления о модели сложной системы фиксируются в виде специальных графических конструкций, получивших название диаграмм.Диаграмма (diagram) — графическое представление совокупности элементов модели в форме связного графа, вершинам и ребрам (дугам) которого приписывается определенная семантика. Нотация канонических диаграмм - основное средство разработки моделей на языке UML.
В нотации языка UML определены следующие виды канонических диаграмм:
Перечень этих диаграмм и их названия являются каноническими в том смысле, что представляют собой неотъемлемую часть графической нотации языка UML. Более того, процесс ООАП неразрывно связан с процессом построения этих диаграмм. При этом совокупность построенных таким образом диаграмм является самодостаточной в том смысле, что в них содержится вся информация, которая необходима для реализации проекта сложной системы.
Каждая из этих диаграмм детализирует и конкретизирует различные представления о модели сложной системы в терминах языка UML. При этом диаграмма вариантов использования представляет собой наиболее общую концептуальную модель сложной системы, которая является исходной для построения всех остальных диаграмм. Диаграмма классов, по своей сути, логическая модель, отражающая статические аспекты структурного построения сложной системы.
Диаграммы кооперации и последовательностей представляют собой разновидности логической модели, которые отражают динамические аспекты функционирования сложной системы. Диаграммы состояний и деятельности предназначены для моделирования поведения системы. И, наконец, диаграммы компонентов и развертывания служат для представления физических компонентов сложной системы и поэтому относятся к ее физической модели.
В целом интегрированная модель сложной системы в нотации UML может быть представлена в виде совокупности указанных выше диаграмм (рис. 2.7).

Рис. 2.7. Интегрированная модель сложной системы в нотации UML
Кроме графических элементов, которые определены для каждой канонической диаграммы, на них может быть изображена текстовая информация, которая расширяет семантику базовых элементов. В языке UML предусмотрены три специальных механизма расширения, которые включают в себя следующие конструкции.
Стереотип (stereotype) — новый тип элемента модели, который расширяет семантику метамодели. Стереотипы должны основываться на уже существующих и описанных в метамодели языка UML типах или классах.
Стереотипы предназначены для расширения именно семантики, но не структуры уже описанных типов или классов. Некоторые стереотипы предопределены в языке UML, другие могут быть указаны разработчиком. На диаграммах изображаются в форме текста, заключенного в угловые кавычки. Предопределенные стереотипы являются ключевыми словами языка UML, которые используются на канонических диаграммах на языке оригинала без их перевода.
Помеченное значение (tagged value) — явное определение свойства как пары "имя – значение". В помеченном значении само имя называют тегом (tag).
Помеченные значения на диаграммах изображаются в форме строки текста специального формата, заключенного в фигурные скобки. При этом используется следующий формат записи: {тег = значение}. Теги встречаются в нотации языка UML, но их определение не является строгим, поэтому теги могут быть указаны самим разработчиком.
Ограничение (constraint) — некоторое логическое условие, ограничивающее семантику выбранного элемента модели.
Как правило, все ограничения специфицируются разработчиком. Ограничения на диаграммах изображаются в форме строки текста, заключенного в фигурные скобки. Для формальной записи ограничений предназначен специальный язык объектных ограничений (Object Constraint Language, OCL), который является составной частью языка UML.
В последующих лекциях канонические диаграммы рассматриваются более подробно.
Общая характеристика моделей объектно-ориентированного анализа и проектирования
Язык UML представляет собой общецелевой язык визуального моделирования, который разработан для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем. Язык UML является достаточно строгим и мощным средством моделирования, которое может быть эффективно использовано для построения концептуальных, логических и графических моделей сложных систем различного целевого назначения. Этот язык вобрал в себя наилучшие качества и опыт методов программной инженерии, которые с успехом использовались на протяжении последних лет при моделировании больших и сложных систем.С точки зрения методологии ООАП достаточно полная модель сложной системы представляет собой определенное число взаимосвязанных представлений (views), каждое из которых адекватно отражает аспект поведения или структуры системы. При этом наиболее общими представлениями сложной системы принято считать статическое и динамическое, которые в свою очередь могут подразделяться на другие более частные.
Принцип иерархического построения моделей сложных систем предписывает рассматривать процесс построения моделей на разных уровнях абстрагирования или детализации в рамках фиксированных представлений.
Уровень представления (layer) — способ организации и рассмотрения модели на одном уровне абстракции, который представляет горизонтальный срез архитектуры модели, в то время как разбиение представляет ее вертикальный срез.
При этом исходная или первоначальная модель сложной системы имеет наиболее общее представление и относится к концептуальному уровню. Такая модель, получившая название концептуальной, строится на начальном этапе проектирования и может не содержать многих деталей и аспектов моделируемой системы. Последующие модели конкретизируют концептуальную модель, дополняя ее представлениями логического и физического уровня.
В целом же процесс ООАП можно рассматривать как последовательный переход от разработки наиболее общих моделей и представлений концептуального уровня к более частным и детальным представлениям логического и физического уровня.
При этом на каждом этапе ООАП данные модели последовательно дополняются все большим количеством деталей, что позволяет им более адекватно отражать различные аспекты конкретной реализации сложной системы. Общая схема взаимосвязей моделей ООАП представлена на рис. 2.1.

Рис. 2.1. Общая схема взаимосвязей моделей и представлений сложной системы в процессе объектно-ориентированного анализа и проектирования
Для описания языка UML используются средства самого языка. К базовым средствам относится пакет, который служит для группировки элементов модели. При этом сами элементы модели, в том числе произвольные сущности, отнесенные к одному пакету, выступают в роли единого целого. При этом все разновидности элементов графической нотации языка UML организованы в пакеты.
При этом на каждом этапе ООАП данные модели последовательно дополняются все большим количеством деталей, что позволяет им более адекватно отражать различные аспекты конкретной реализации сложной системы. Общая схема взаимосвязей моделей ООАП представлена на рис. 2.1.

Рис. 2.1. Общая схема взаимосвязей моделей и представлений сложной системы в процессе объектно-ориентированного анализа и проектирования
Для описания языка UML используются средства самого языка. К базовым средствам относится пакет, который служит для группировки элементов модели. При этом сами элементы модели, в том числе произвольные сущности, отнесенные к одному пакету, выступают в роли единого целого. При этом все разновидности элементов графической нотации языка UML организованы в пакеты.
Особенности графического изображения диаграмм языка UML
Большинство перечисленных выше диаграмм являются в своей основе графами специального вида, состоящими из вершин в форме геометрических фигур, которые связаны между собой ребрами или дугами. Поскольку информация, которую содержит в себе граф, носит топологический характер, ни геометрические размеры, ни расположение элементов диаграмм не имеют принципиального значения.Для диаграмм языка UML существуют три типа визуальных графических обозначений, которые важны с точки зрения заключенной в них информации:
Все диаграммы в языке UML изображаются с использованием фигур на плоскости. Отдельные элементы - с помощью геометрических фигур, которые могут иметь различную высоту и ширину с целью размещения внутри них других конструкций языка UML. Наиболее часто внутри таких символов помещаются строки текста, которые уточняют семантику или фиксируют отдельные свойства соответствующих элементов языка UML. Информация, содержащаяся внутри фигур, имеет значение для конкретной модели проектируемой системы, поскольку регламентирует реализацию соответствующих элементов в программном коде.
Пути представляют собой последовательности из отрезков линий, соединяющих отдельные графические символы. При этом концевые точки отрезков линий должны обязательно соприкасаться с геометрическими фигурами, служащими для обозначения вершин диаграмм, как принято в теории графов. С концептуальной точки зрения путям в языке UML придается особое значение, поскольку это простые топологические сущности. Отдельные части пути или сегменты могут не существовать вне содержащего их пути. Пути всегда соприкасаются с другими графическими символами на обеих границах соответствующих отрезков линий, т.е. пути не могут обрываться на диаграмме линией, которая не соприкасается ни с одним графическим символом. Как отмечалось выше, пути могут иметь в качестве окончания или терминатора специальную графическую фигуру – значок, который изображается на одном из концов линий.
Дополнительные значки или украшения представляют собой графические фигуры фиксированного размера и формы. Они не могут увеличивать свои размеры, чтобы разместить внутри себя дополнительные символы. Значки размещаются как внутри других графических конструкций, так и вне их. Примерами значков могут служить окончания связей элементов диаграмм или графические обозначения кванторов видимости атрибутов и операций классов.
Строки текста служат для представления различных видов информации в грамматической форме. Предполагается, что каждое использование строки текста должно соответствовать синтаксису в нотации языка UML. В отдельных случаях может быть реализован грамматический разбор этой строки, который необходим для получения дополнительной информации о модели. Например, строки текста в различных секциях обозначения класса могут соответствовать атрибутам этого класса или его операциям. На использование строк накладывается условие: требуется, чтобы семантика всех допустимых символов была заранее определена в языке UML или служила предметом его расширения в конкретной модели.
Пакеты в языке UML
Пакет (package) — общецелевой механизм для организации различных элементов модели в множество, реализующий системный принцип декомпозиции модели сложной системы и допускающий вложенность пакетов друг в друга.Пакет – основной способ организации элементов модели в языке UML. Каждый пакет владеет всеми своими элементами, т. е. теми элементами, которые включены в него. Про соответствующие элементы пакета говорят, что они принадлежат пакету или входят в него. При этом каждый элемент может принадлежать только одному пакету. В свою очередь, одни пакеты могут быть вложены в другие.
Подпакет (subpackage) — пакет, который является составной частью другого пакета.
По определению все элементы подпакета принадлежат и более общему пакету. Тем самым для элементов модели задается отношение вложенности пакетов, которое представляет собой иерархию.
Для графического изображения пакетов на диаграммах применяется специальный графический символ – большой прямоугольник с небольшим прямоугольником, присоединенным к левой части верхней стороны первого (рис. 2.2 а, б). Можно сказать, что визуально символ пакета напоминает пиктограмму папки в популярном графическом интерфейсе. Внутри большого прямоугольника может записываться информация, относящаяся к данному пакету. Если такой информации нет, то внутри большого прямоугольника записывается имя пакета, которое должно быть уникальным в пределах рассматриваемой модели (рис. 2.2, а). Если же такая информация имеется, то имя пакета записывается в верхнем маленьком прямоугольнике (рис. 2.2, б).

Рис. 2.2. Графическое изображение пакетов в языке UML
Перед именем пакета может помещаться строка текста, содержащая ключевое слово, заранее определенное в языке UML, и называемое стереотипом, например facade, framework, stub и topLevel. В качестве содержимого пакета могут выступать имена его отдельных элементов и их свойства, такие как видимость элементов за пределами пакета. Более подробно стереотипы и видимость элементов будут рассмотрены в последующих лекциях.
Одним из типов отношений между пакетами является отношение вложенности или включения пакетов друг в друга. В языке UML это отношение может быть изображено без использования линий простым размещением одного пакета-прямоугольника внутри другого пакета-прямоугольника (рис. 2.3). Так, в данном случае пакет с именем Пакет_1 содержит в себе два подпакета: Пакет_2 и Пакет_3.

Рис. 2.3. Графическое изображение вложенности пакетов друг в друга
Кроме того в языке UML это же отношение может быть изображено с помощью отрезков линий аналогично графическому представлению дерева. В этом случае наиболее общий пакет или контейнер изображается в верхней части рисунка, а его подпакеты – уровнем ниже. Контейнер соединяется с подпакетами сплошной линией, на конце которой, примыкающей к контейнеру, изображается специальный символ –
. Он означает, что подпакеты "собственность" или часть контейнера, и, кроме этих подпакетов, контейнер не содержит никаких других. Рассмотренный выше пример (рис.2.3) может быть представлен с помощью явной визуализации отношения включения (рис. 2.4). 
Рис. 2.4. Графическое изображение языка UML для вложенности пакетов друг в друга с помощью явной визуализации отношения включения
Модель является подклассом пакета и представляет собой абстракцию физической системы, которая предназначена для вполне определенной цели. Именно эта цель предопределяет те компоненты, которые должны быть включены в модель и те, рассмотрение которых не является обязательным. Другими словами, модель отражает релевантные аспекты физической системы, оказывающие непосредственное влияние на достижение поставленной цели. В прикладных задачах цель обычно задается в форме исходных требований к системе, которые, в свою очередь, в языке UML записываются в виде вариантов использования системы.
В языке UML для одной и той же физической системы могут быть определены различные модели, каждая из которых специфицирует систему с различных точек зрения.
Примерами таких моделей являются логическая модель, модель проектирования, модель вариантов использования и другие. При этом каждая такая модель имеет собственную точку зрения на физическую систему и свой уровень абстракции. Модели, как и пакеты, могут быть вложены друг в друга. Пакет может включать в себя несколько различных моделей одной и той же системы, и в этом состоит один из важнейших механизмов разработки моделей на языке UML. Общая модель системы в контексте языка UML содержит в себе модель анализа и модель проектирования, что явно отражает связь с ООАП (рис. 2.5).

Рис. 2.5. Изображение модели системы в виде пакетов моделей анализа и проектирования
Подсистема есть просто группировка элементов модели, которые специфицируют простейшее поведение физической системы. При этом элементы подсистемы делятся на две части – спецификацию поведения и его реализацию. Для графического представления подсистемы применяется специальное обозначение – прямоугольник, как в случае пакета, но дополнительно разделенный на три секции (рис.2.6). При этом в верхнем маленьком прямоугольнике изображается символ, по своей форме напоминающий "вилку" и указывающий на подсистему. Имя подсистемы вместе с необязательным ключевым словом или стереотипом записывается внутри большого прямоугольника. Однако при наличии строк текста внутри большого прямоугольника имя подсистемы может быть записано рядом с обозначением "вилки".

Рис. 2.6. Графическое изображение подсистемы в языке UML
Операции подсистемы записываются в левой верхней секции, ниже указываются элементы спецификации, а справа от вертикальной линии – элементы реализации. При этом два последних раздела помечаются соответствующими метками: "Элементы спецификации" и "Элементы реализации". Секция операций никак не помечается. Если в подсистеме отсутствуют те или иные секции, то они не отображаются на схеме.
Рекомендации по графическому изображению диаграмм языка UML
При графическом изображении диаграмм следует придерживаться следующих основных рекомендаций:В то же время общие фрагменты диаграмм могут уточняться или детализироваться на других диаграммах этого же типа, образуя вложенные или подчиненные диаграммы. Таким образом, модель системы на языке UML представляет собой пакет иерархически вложенных диаграмм, детализация которых должна быть достаточной для последующей генерации программного кода, реализующего проект соответствующей системы.
В заключение этой лекции следует отметить, что наличие в инструментальных CASE-средствах встроенной поддержки визуализации различных диаграмм языка UML позволяет в некоторой степени исключить ошибочное использование графических символов, а также контролировать уникальность имен элементов диаграмм. Однако, поскольку вся ответственность за окончательный контроль непротиворечивости модели лежит на разработчике, необходимо помнить, что недостаточно формальный характер языка UML и возможность его расширения может служить источником потенциальных ошибок, которые в полном объеме вряд ли будут выявлены инструментальными средствами.Именно это обстоятельство требует от всех разработчиков глубокого знания нотации и семантики всех элементов языка UML.
Диаграмма вариантов использования
Визуальное моделирование с использованием нотации UML можно представить как процесс поуровневого спуска от наиболее общей и абстрактной концептуальной модели исходной бизнес-системы к логической, а затем и к физической модели соответствующей программной системы. Для достижения этих целей вначале строится модель в форме так называемой диаграммы вариантов использования (use case diagram), которая описывает функциональное назначение системы или, другими словами, то, что бизнес-система должна делать в процессе своего функционирования.Диаграмма вариантов использования (use case diagram) — диаграмма, на которой изображаются отношения между актерами и вариантами использования.
Диаграмма вариантов использования - это исходное концептуальное представление или концептуальная модель системы в процессе ее проектирования и разработки. Создание диаграммы вариантов использования имеет следующие цели:
Назначение данной диаграммы состоит в следующем: проектируемая программная система представляется в форме так называемых вариантов использования, с которыми взаимодействуют внешние сущности или актеры. При этом актером или действующим лицом называется любой объект, субъект или система, взаимодействующая с моделируемой бизнес-системой извне. Это может быть человек, техническое устройство, программа или любая другая система, которая служит источником воздействия на моделируемую систему так, как определит разработчик. Вариант использования служит для описания сервисов, которые система предоставляет актеру. Другими словами каждый вариант использования определяет набор действий, совершаемый системой при диалоге с актером.
При этом ничего не говорится о том, каким образом будет реализовано взаимодействие актеров с системой и собственно выполнение вариантов использования.
Рассматривая диаграмму вариантов использования в качестве модели бизнес-системы, можно ассоциировать ее с "черным ящиком". Концептуальный характер этой диаграммы проявляется в том, что подробная детализация диаграммы или включение в нее элементов физического уровня представления на начальном этапе проектирования скорее имеет отрицательный характер, поскольку предопределяет способы реализации поведения системы. Эти аспекты должны быть сознательно скрыты от разработчика на диаграмме вариантов использования.
В самом общем случае, диаграмма вариантов использования представляет собой граф специального вида, который является графической нотацией для представления конкретных вариантов использования, актеров и отношений между этими элементами. При этом отдельные элементы диаграммы заключают в прямоугольник, который обозначает границы проектируемой системы. В то же время отношения, которые могут быть изображены на данном графе, представляют собой только фиксированные типы взаимосвязей между актерами и вариантами использования, которые в совокупности описывают сервисы или функциональные требования к моделируемой системе.
Базовыми элементами диаграммы вариантов использования являются вариант использования и актер.
Вариант использования (use case) — внешняя спецификация последовательности действий, которые система или другая сущность могут выполнять в процессе взаимодействия с актерами.
Вариант использования представляет собой спецификацию общих особенностей поведения или функционирования моделируемой системы без рассмотрения внутренней структуры этой системы. Несмотря на то, что каждый вариант использования определяет последовательность действий, которые должны быть выполнены проектируемой системой при взаимодействии ее с соответствующим актером, сами эти действия не изображаются на рассматриваемой диаграмме.
Содержание варианта использования может быть представлено в форме дополнительного пояснительного текста, который раскрывает смысл или семантику действий при выполнении данного варианта использования.
Такой пояснительный текст получил название текста-сценария или просто сценария. Далее в этой главе рассматривается один из шаблонов, который может быть рекомендован для написания сценариев вариантов использования.
Отдельный вариант использования обозначается на диаграмме эллипсом, внутри которого содержится его краткое имя в форме существительного (рис. 3.1, а) или глагола (рис. 3.1, б) с пояснительными словами. Сам текст имени варианта использования должен начинаться с заглавной буквы.
Имя (name) — строка текста, которая используется для идентификации любого элемента модели.

Рис. 3.1. Графическое обозначение варианта использования
Цель спецификации варианта использования заключается в том, чтобы зафиксировать некоторый аспект или фрагмент поведения проектируемой системы без указания особенностей реализации данной функциональности. В этом смысле каждый вариант использования соответствует отдельному сервису, который предоставляет моделируемая система по запросу актера, т. е. определяет один из способов применения системы. Сервис, который инициализируется по запросу актера, должен представлять собой законченную последовательность действий. Это означает, что после того как система закончит обработку запроса актера, она должна возвратиться в исходное состояние, в котором снова готова к выполнению следующих запросов.
Диаграмма вариантов использования содержит конечное множество вариантов использования, которые в целом должны определять все возможные стороны ожидаемого поведения системы. Для удобства множество вариантов использования может рассматриваться как отдельный пакет. Применение вариантов использования на всех этапах работы над проектом позволяет не только достичь требуемого уровня унификации обозначений для представления функциональности подсистем и системы в целом, но и является мощным средством последовательного уточнения требований к проектируемой системе на основе их итеративного обсуждения со всеми заинтересованными специалистами.
Примерами вариантов использования могут быть следующие действия: проверка состояния текущего счета клиента, оформление заказа на покупку товара, получение дополнительной информации о кредитоспособности клиента, отображение графической формы на экране монитора и другие действия.
Актер (actor) — согласованное множество ролей, которые играют внешние сущности по отношению к вариантам использования при взаимодействии с ними.
Актер представляет собой любую внешнюю по отношению к моделируемой системе сущность, которая взаимодействует с системой и использует ее функциональные возможности для достижения определенных целей или решения частных задач. Каждый актер может рассматриваться как некая отдельная роль относительно конкретного варианта использования. Стандартным графическим обозначением актера на диаграммах является фигурка "человечка", под которой записывается имя актера (рис. 3.2).

Рис. 3.2. Графическое обозначение актера
В некоторых случаях актер может обозначаться в виде прямоугольника класса со стереотипом <
Имя актера должно быть достаточно информативным с точки зрения семантики. Для этой цели подходят наименования должностей в компании (например, продавец, кассир, менеджер, президент). Не рекомендуется давать актерам имена собственные или названия моделей конкретных устройств, даже если это с очевидностью следует из контекста проекта. Дело в том, что одно и то же лицо может выступать в нескольких ролях и, соответственно, обращаться к различным сервисам системы.
Актеры используются для моделирования внешних по отношению к проектируемой системе сущностей, которые взаимодействуют с системой. В качестве актеров могут выступать другие системы, в том числе подсистемы проектируемой системы или ее отдельные классы.
Важно понимать, что каждый актер определяет согласованное множество ролей, в которых могут выступать пользователи данной системы в процессе взаимодействия с ней. В каждый момент времени с системой взаимодействует вполне определенный пользователь, при этом он играет или выступает в одной из таких ролей. Наиболее наглядный пример актера — конкретный посетитель web-сайта в Интернет со своими параметрами аутентификации.
Поскольку в общем случае актер всегда находится вне системы, его внутренняя структура никак не определяется. Для актера имеет значение только его внешнее представление, т. е. то, как он воспринимается со стороны системы. Актеры взаимодействуют с системой посредством передачи и приема сообщений от вариантов использования. Сообщение представляет собой запрос актером сервиса от системы и получение этого сервиса. Это взаимодействие может быть выражено посредством ассоциаций между отдельными актерами и вариантами использования. Кроме этого, с актерами могут быть связаны интерфейсы, которые определяют, каким образом другие элементы модели взаимодействуют с этими актерами.
Дополнительные обозначения языка UML для бизнес-моделирования
Язык UML включает в себя специальные механизмы расширения, которые позволяют ввести в рассмотрение дополнительные графические обозначения, ориентированные для решения задач из определенной предметной области. Примеры подобных обозначений, которые используются для моделирования бизнес-систем и могут быть изображены на диаграммах вариантов использования: бизнес-актер, сотрудник и бизнес - вариант использования.Бизнес-актер (business actor) – индивидуум, группа, организация, компания или система, которые взаимодействуют с моделируемой бизнес-системой, но не входят в нее, т.е. не являются частью моделируемой системы.
Графическое изображение бизнес-актера приводится на рис. 3.7, а. Примерами бизнес-актеров являются клиенты, покупатели, поставщики, партнеры. Общее свойство бизнес-актеров состоит в том, что они являются инициаторами или клиентами бизнес-процессов моделируемой системы.
Сотрудник (business worker) – индивидуум, который действует внутри моделируемой бизнес-системы, взаимодействует с другими сотрудниками и является участником бизнес-процесса моделируемой системы.
Графическое изображение сотрудника приводится на рис. 3.7, б. Примерами сотрудников являются менеджеры, администраторы, кассиры, инженеры. Общее свойство сотрудников заключается в том то, что они являются субъектами и входят в состав моделируемой системы.
Бизнес-вариант использования (business use case) — вариант использования, определяющий последовательность действий моделируемой системы, направленных на выполнение отдельного бизнес-процесса.
Графическое изображение бизнес-варианта использования приводится на рис. 3.7, в. Общее свойство бизнес-вариантов использования состоит в том, что они являются концептуальной моделью отдельных бизнес-процессов моделируемой системы.

Рис. 3.7. Графические изображения бизнес-актера (а), бизнес-сотрудника (б) и бизнес-варианта использования (в)
Применение этих элементов графической нотации иллюстрирует пример представления диаграмм вариантов использования для системы продажи товаров в супермаркете.
Эта модель может быть использована при создании и автоматизации соответствующих информационных систем.
В качестве бизнес-актера данной системы можно рассматривать покупателя супермаркета, а в качестве сотрудника – продавца. При этом покупатель является клиентом сервиса "Оформление заказа на покупку товара", а продавец участвует в реализации соответствующего бизнес-процесса. Как следует из существа выдвигаемых к системе требований, этот сервис выступает в качестве базового бизнес-варианта использования данной системы.
С одной стороны, продажа товаров предполагает согласование условий оплаты с покупателем и заказ товара со склада. Поскольку эта функциональность выполняется всегда, она может быть выделена в самостоятельные бизнес-варианты использования, которые будут связаны с базовым отношением включения.
С другой стороны, продажа товаров может предполагать наличие отдельного информационного объекта — каталога товаров, который в некотором смысле не зависит от реализации сервиса по обслуживанию покупателей. В данном случае, каталог товаров может запрашиваться покупателем у продавца при необходимости выбора товара и уточнения его свойств. Вполне резонно представить сервис "Предоставление каталога товаров" в качестве самостоятельного бизнес-варианта использования.
Дальнейшая детализация данной модели может быть выполнена на основе установления дополнительных отношений , в частности отношения "обобщение-специализация" для уже имеющихся компонентов диаграммы вариантов использования. Так, в рамках рассматриваемой системы продажи товаров может иметь самостоятельное значение и специфические особенности отдельная категория товаров — телевизоры. В этом случае диаграмма дополняется вариантом использования "Оформление заказа на покупку телевизора", который связан с сервисом "Оформление заказа на покупку товара" отношением обобщения.
Полученная в результате диаграмма вариантов использования будет содержать 5 бизнес-вариантов использования, одного бизнес-актера и одного сотрудника, между которыми установлены соответствующие отношения включения, расширения и обобщения.
Эта диаграмма, изображенная в общих обозначениях нотации языка UML, представлена на рис. 3.8

Рис. 3.8. Диаграмма вариантов использования для системы продажи товаров по каталогу в общих обозначениях языка UML
Анализируя рассматриваемую систему продажи товаров по каталогу, можно заметить, что она представляет собой концептуальную модель типичной бизнес-системы, особенности которой связаны с получением определенной прибыли от реализации соответствующих бизнес-процессов. При этом роли покупателя и продавца в рассматриваемой системе существенно отличаются. Действительно, покупатель является внешним по отношению к системе субъектом, в то время как продавец является частью бизнес-системы. Реализация рассмотренных вариантов использования не изображается на диаграммах вариантов использования. Для моделирования логических и физических аспектов реализации предназначены другие типы канонических диаграмм, которые будут рассмотрены в следующих лекциях.

![]() | © 2003-2007 INTUIT.ru. Все права защищены. |
Отношения на диаграмме вариантов использования
Отношение (relationship) — семантическая связь между отдельными элементами модели.Между элементами диаграммы вариантов использования могут существовать различные отношения, которые описывают взаимодействие экземпляров одних актеров и вариантов использования с экземплярами других актеров и вариантов. Один актер может взаимодействовать с несколькими вариантами использования. В этом случае этот актер обращается к нескольким сервисам данной системы. В свою очередь один вариант использования может взаимодействовать с несколькими актерами, предоставляя для всех них свой сервис.
В то же время два варианта использования, определенные в рамках одной моделируемой системы, также могут взаимодействовать друг с другом, однако характер этого взаимодействия будет отличаться от взаимодействия с актерами. Однако в обоих случаях способы взаимодействия элементов модели предполагают обмен сигналами или сообщениями, которые инициируют реализацию функционального поведения моделируемой системы.
В языке UML имеется несколько стандартных видов отношений между актерами и вариантами использования:
При этом общие свойства вариантов использования могут быть представлены тремя различными способами, а именно — с помощью отношений включения, расширения и обобщения.
Отношение ассоциации – одно из фундаментальных понятий в языке UML и в той или иной степени используется при построении всех графических моделей систем в форме канонических диаграмм. Применительно к диаграммам вариантов использования ассоциация служит для обозначения специфической роли актера при его взаимодействии с отдельным вариантом использования. Другими словами, ассоциация специфицирует семантические особенности взаимодействия актеров и вариантов использования в графической модели системы. На диаграмме вариантов использования, так же как и на других диаграммах, отношение ассоциации обозначается сплошной линией между актером и вариантом использования.
Эта линия может иметь некоторые дополнительные обозначения, например, имя и кратность (рис. 3.3).

Рис. 3.3. Пример графического представления отношения ассоциации между актером и вариантом использования
В контексте диаграммы вариантов использования отношение ассоциации между актером и вариантом использования может указывать на то, что актер инициирует соответствующий вариант использования. Такого актера называют главным. В других случаях подобная ассоциация может указывать на актера, которому предоставляется справочная информация о результатах функционирования моделируемой системы. Таких актеров часто называют второстепенными. Более детальное описание семантических особенностей отношения ассоциации будет дано при рассмотрении других диаграмм в последующих лекциях.
Включение (include) в языке UML — это разновидность отношения зависимости между базовым вариантом использования и его специальным случаем. При этом отношением зависимости (dependency) является такое отношение между двумя элементами модели, при котором изменение одного элемента (независимого) приводит к изменению другого элемента (зависимого).
Отношение включения устанавливается только между двумя вариантами использования и указывает на то, что заданное поведение для одного варианта использования включается в качестве составного фрагмента в последовательность поведения другого варианта использования. Данное отношение является направленным бинарным отношением в том смысле, что пара экземпляров вариантов использования всегда упорядочена в отношении включения.
Так, например, отношение включения, направленное от варианта использования "Предоставление кредита в банке" к варианту использования "Проверка платежеспособности клиента", указывает на то, что каждый экземпляр первого варианта использования всегда включает в себя функциональное поведение или выполнение второго варианта использования. В этом смысле поведение второго варианта использования является частью поведения первого варианта использования на данной диаграмме.
Графически данное отношение обозначается как отношение зависимости в форме пунктирной линии со стрелкой, направленной от базового варианта использования к включаемому варианту использования. При этом данная линия помечается стереотипом <

Рис. 3.4. Пример графического изображения отношения включения между вариантами использования
Семантика этого отношения определяется следующим образом. Процесс выполнения базового варианта использования включает в себя как собственное подмножество последовательность действий, которая определена для включаемого варианта использования. При этом выполнение включаемой последовательности действий происходит всегда при инициировании базового варианта использования.
Один вариант использования может входить в несколько других вариантов, а также содержать в себе другие варианты. Включаемый вариант использования является независимым от базового варианта в том смысле, что он предоставляет последнему инкапсулированное поведение, детали реализации которого скрыты от последнего и могут быть легко перераспределены между несколькими включаемыми вариантами использования. Более того, базовый вариант зависит только от результатов выполнения включаемого в него варианта использования, но не от структуры включаемых в него вариантов.
Отношение расширения (extend) определяет взаимосвязь базового варианта использования с другим вариантом использования, функциональное поведение которого задействуется базовым не всегда, а только при выполнении дополнительных условий.
В языке UML отношение расширения является зависимостью, направленной к базовому варианту использования и соединенной с ним в так называемой точке расширения. Отношение расширения между вариантами использования обозначается как отношение зависимости в форме пунктирной линии со стрелкой, направленной от того варианта использования, который является расширением для базового варианта использования. Данная линия со стрелкой должна быть помечена стереотипом <

Рис. 3.5. Пример графического изображения отношения расширения между вариантами использования
В изображенном фрагменте имеет место отношение расширения между базовым вариантом использования "Предоставление кредита в банке" и вариантом использования "Предоставление налоговых льгот". Это означает, что свойства поведения первого варианта использования в некоторых случаях могут быть дополнены функциональностью второго варианта использования. Для того чтобы это расширение имело место, должно быть выполнено определенное логическое условие данного отношения расширения.
Отношение расширения позволяет моделировать таким образом, что один из вариантов использования должен присоединять к своему поведению дополнительное поведение, определенное для другого варианта использования. В то же время данное отношение всегда предполагает проверку условия и ссылку на точку расширения в базовом варианте использования. Точка расширения определяет место в базовом варианте использования, в которое должно быть помещено расширение при выполнении соответствующего логического условия. При этом один из вариантов использования может быть расширением для нескольких базовых вариантов, а также иметь в качестве собственных расширений другие варианты. Базовый вариант использования не зависит от своих расширений.
Семантика отношения расширения определяется следующим образом. Если базовый вариант использования выполняет некоторую последовательность действий, которая определяет его поведение, и при этом имеется точка расширения на экземпляр другого варианта использования, которая является первой из всех точек расширения у базового варианта, то проверяется логическое условие данного отношения. Если это условие выполняется, исходная последовательность действий расширяется посредством включения действий другого варианта использования. Следует заметить, что условие отношения расширения проверяется лишь один раз — при первой ссылке на точку расширения, и если оно выполняется, то все расширяющие варианты использования вставляются в базовый вариант.
Два и более актера могут иметь общие свойства, т. е. взаимодействовать с одним и тем же множеством вариантов использования одинаковым образом. Такая общность свойств и поведения представляется в виде отношения обобщения с другим, возможно, абстрактным актером, который моделирует соответствующую общность ролей.
Графически отношение обобщения обозначается сплошной линией со стрелкой в форме не закрашенного треугольника, которая указывает на родительский вариант использования (рис. 3.6). Эта линия со стрелкой имеет специальное название — стрелка-обобщение.

Рис. 3.6. Пример графического изображения отношения обобщения между вариантами использования
В данном примере отношение обобщения указывает на то, что вариант использования "Предоставление кредита корпоративным клиентам" - специальный случай варианта использования "Предоставление кредита клиентам банка". Другими словами, первый вариант использования является специализацией второго варианта использования. При этом вариант использования "Предоставление кредита клиентам банка" еще называют предком или родителем по отношению к варианту использования "Предоставление кредита корпоративным клиентам", а последний вариант называют потомком по отношению к первому варианту использования. Следует подчеркнуть, что потомок наследует все свойства поведения своего родителя, а также может обладать дополнительными особенностями поведения.
Отношение обобщения между вариантами использования применяется в том случае, когда необходимо отметить, что дочерние варианты использования обладают всеми особенностями поведения родительских вариантов. При этом дочерние варианты использования участвуют во всех отношениях родительских вариантов. В свою очередь, дочерние варианты могут наделяться новыми свойствами поведения, которые отсутствуют у родительских вариантов использования, а также уточнять или модифицировать наследуемые от них свойства поведения.
Эта линия может иметь некоторые дополнительные обозначения, например, имя и кратность (рис. 3.3).

Рис. 3.3. Пример графического представления отношения ассоциации между актером и вариантом использования
В контексте диаграммы вариантов использования отношение ассоциации между актером и вариантом использования может указывать на то, что актер инициирует соответствующий вариант использования. Такого актера называют главным. В других случаях подобная ассоциация может указывать на актера, которому предоставляется справочная информация о результатах функционирования моделируемой системы. Таких актеров часто называют второстепенными. Более детальное описание семантических особенностей отношения ассоциации будет дано при рассмотрении других диаграмм в последующих лекциях.
Включение (include) в языке UML — это разновидность отношения зависимости между базовым вариантом использования и его специальным случаем. При этом отношением зависимости (dependency) является такое отношение между двумя элементами модели, при котором изменение одного элемента (независимого) приводит к изменению другого элемента (зависимого).
Отношение включения устанавливается только между двумя вариантами использования и указывает на то, что заданное поведение для одного варианта использования включается в качестве составного фрагмента в последовательность поведения другого варианта использования. Данное отношение является направленным бинарным отношением в том смысле, что пара экземпляров вариантов использования всегда упорядочена в отношении включения.
Так, например, отношение включения, направленное от варианта использования "Предоставление кредита в банке" к варианту использования "Проверка платежеспособности клиента", указывает на то, что каждый экземпляр первого варианта использования всегда включает в себя функциональное поведение или выполнение второго варианта использования. В этом смысле поведение второго варианта использования является частью поведения первого варианта использования на данной диаграмме.
Графически данное отношение обозначается как отношение зависимости в форме пунктирной линии со стрелкой, направленной от базового варианта использования к включаемому варианту использования. При этом данная линия помечается стереотипом <

Рис. 3.4. Пример графического изображения отношения включения между вариантами использования
Семантика этого отношения определяется следующим образом. Процесс выполнения базового варианта использования включает в себя как собственное подмножество последовательность действий, которая определена для включаемого варианта использования. При этом выполнение включаемой последовательности действий происходит всегда при инициировании базового варианта использования.
Один вариант использования может входить в несколько других вариантов, а также содержать в себе другие варианты. Включаемый вариант использования является независимым от базового варианта в том смысле, что он предоставляет последнему инкапсулированное поведение, детали реализации которого скрыты от последнего и могут быть легко перераспределены между несколькими включаемыми вариантами использования. Более того, базовый вариант зависит только от результатов выполнения включаемого в него варианта использования, но не от структуры включаемых в него вариантов.
Отношение расширения (extend) определяет взаимосвязь базового варианта использования с другим вариантом использования, функциональное поведение которого задействуется базовым не всегда, а только при выполнении дополнительных условий.
В языке UML отношение расширения является зависимостью, направленной к базовому варианту использования и соединенной с ним в так называемой точке расширения. Отношение расширения между вариантами использования обозначается как отношение зависимости в форме пунктирной линии со стрелкой, направленной от того варианта использования, который является расширением для базового варианта использования. Данная линия со стрелкой должна быть помечена стереотипом <

Рис. 3.5. Пример графического изображения отношения расширения между вариантами использования
В изображенном фрагменте имеет место отношение расширения между базовым вариантом использования "Предоставление кредита в банке" и вариантом использования "Предоставление налоговых льгот". Это означает, что свойства поведения первого варианта использования в некоторых случаях могут быть дополнены функциональностью второго варианта использования. Для того чтобы это расширение имело место, должно быть выполнено определенное логическое условие данного отношения расширения.
Отношение расширения позволяет моделировать таким образом, что один из вариантов использования должен присоединять к своему поведению дополнительное поведение, определенное для другого варианта использования. В то же время данное отношение всегда предполагает проверку условия и ссылку на точку расширения в базовом варианте использования. Точка расширения определяет место в базовом варианте использования, в которое должно быть помещено расширение при выполнении соответствующего логического условия. При этом один из вариантов использования может быть расширением для нескольких базовых вариантов, а также иметь в качестве собственных расширений другие варианты. Базовый вариант использования не зависит от своих расширений.
Семантика отношения расширения определяется следующим образом. Если базовый вариант использования выполняет некоторую последовательность действий, которая определяет его поведение, и при этом имеется точка расширения на экземпляр другого варианта использования, которая является первой из всех точек расширения у базового варианта, то проверяется логическое условие данного отношения. Если это условие выполняется, исходная последовательность действий расширяется посредством включения действий другого варианта использования. Следует заметить, что условие отношения расширения проверяется лишь один раз — при первой ссылке на точку расширения, и если оно выполняется, то все расширяющие варианты использования вставляются в базовый вариант.
Два и более актера могут иметь общие свойства, т. е. взаимодействовать с одним и тем же множеством вариантов использования одинаковым образом. Такая общность свойств и поведения представляется в виде отношения обобщения с другим, возможно, абстрактным актером, который моделирует соответствующую общность ролей.
Графически отношение обобщения обозначается сплошной линией со стрелкой в форме не закрашенного треугольника, которая указывает на родительский вариант использования (рис. 3.6). Эта линия со стрелкой имеет специальное название — стрелка-обобщение.

Рис. 3.6. Пример графического изображения отношения обобщения между вариантами использования
В данном примере отношение обобщения указывает на то, что вариант использования "Предоставление кредита корпоративным клиентам" - специальный случай варианта использования "Предоставление кредита клиентам банка". Другими словами, первый вариант использования является специализацией второго варианта использования. При этом вариант использования "Предоставление кредита клиентам банка" еще называют предком или родителем по отношению к варианту использования "Предоставление кредита корпоративным клиентам", а последний вариант называют потомком по отношению к первому варианту использования. Следует подчеркнуть, что потомок наследует все свойства поведения своего родителя, а также может обладать дополнительными особенностями поведения.
Отношение обобщения между вариантами использования применяется в том случае, когда необходимо отметить, что дочерние варианты использования обладают всеми особенностями поведения родительских вариантов. При этом дочерние варианты использования участвуют во всех отношениях родительских вариантов. В свою очередь, дочерние варианты могут наделяться новыми свойствами поведения, которые отсутствуют у родительских вариантов использования, а также уточнять или модифицировать наследуемые от них свойства поведения.
Формализация функциональных требований к системе с помощью диаграммы вариантов использования
Отдельные варианты использования могут применяться как для спецификации требований к проектируемой системе, так и для документирования процесса поведения имеющейся системы. Кроме этого, варианты использования неявно специфицируют требования, определяющие особенности взаимодействия пользователей с системой, которые специфицируют возможность корректной работы с предоставляемыми данной системой сервисами.Требование (requirement) - желательное свойство, характеристика или условие, которым должна удовлетворять система в процессе своей эксплуатации.
Применительно к программным системам предложена следующая классификация требований, которая получила название модели FURPS+, что соответствует первым буквам соответствующих категорий требований на английском языке:
При этом символом "+" обозначены дополнительные условия, к которым относятся:
Центральное место среди указанных требований занимают функциональные, которые специфицируют особенности реализации отдельных бизнес-процессов моделируемой системы. В контексте моделей языка UML именно функциональные требования должны служить исходной информацией для построения диаграмм вариантов использования. Однако графических средств языка UML на практике оказывается недостаточно для спецификации функциональных требований.
Следует отметить, что одним из требований языка UML является самодостаточность диаграмм для представления информации о моделях проектируемых систем. Однако большинство разработчиков и экспертов согласны с тем, что изобразительных средств языка UML явно не хватает для того, чтобы учесть на диаграммах вариантов использования особенности функционального поведения сложной системы.
С этой целью рекомендуется дополнять этот тип диаграмм текстовыми сценариями, которые уточняют или детализируют последовательность действий, совершаемых системой при выполнении ее вариантов использования.
Сценарий (scenario) - определенная последовательность действий, которая описывает действия актеров и поведение моделируемой системы в форме обычного текста.
В контексте языка UML сценарий используется для дополнительной иллюстрации взаимодействия актеров и вариантов использования. Предлагаются различные способы представления или написания подобных сценариев. Один из таких шаблонов рассматривается ниже и может быть рекомендован читателям для применения на начальных этапах концептуального моделирования (табл. 4.1).
| Имя варианта использования | Типичный ход событий, приводящий к успешному выполнению варианта использования | Исключение № 1 | Примечания № 1 |
| Актеры | Исключение № 2 | Примечания № 2 | |
| Цель | ... | ... | |
| Краткое описание | |||
| Тип | |||
| Ссылки на другие варианты использования | Исключение № N | Примечания № N |
Построение диаграммы вариантов использования - самый первый этап процесса объектно-ориентированного анализа и проектирования, цель которого - представить совокупность функциональных требований к поведению проектируемой системы. Спецификация требований к проектируемой системе в форме диаграммы вариантов использования и дополнительных сценариев может представлять собой самостоятельную модель, которая в языке UML получила название модели вариантов использования и имеет свое специальное стандартное имя или стереотип <
Все заданные в этой модели требования допустимо представить в виде общей модели системы, которая может быть оформлена как отдельный пакет Система.Этот пакет в свою очередь может представлять собой иерархию пакетов, на самом верхнем уровне которых содержится множество классов, реализующих базовые варианты использования проектируемой системы. При этом пакет системы самого верхнего уровня может быть дополнительно помечен стереотипом <
Особенности спецификации функциональных требований на диаграмме вариантов использования
Для иллюстрации особенностей спецификации функциональных требований на диаграмме вариантов использования можно рассмотреть модель обычного банкомата. Процесс функционирования этой системы хорошо знаком владельцам кредитных карточек, поэтому не требует дополнительного описания. Особенность отечественных банкоматов состоит в том, что в них отсутствует возможность перевода средств с одного счета на другой. Рассматриваемая система имеет двух актеров, один из которых является клиентом банкомата, а другой - Банком, который осуществляет выполнение соответствующих транзакций. Каждый из этих актеров взаимодействует с банкоматом, хотя главный актер Клиент, поскольку именно он инициирует функциональность банкомата.Основные функциональные требования к банкомату заключаются в предоставлении клиенту возможности снятия наличных по кредитной карточке и получении справки о состоянии счета. Именно эти функциональные требования специфицируются отдельными вариантами использования, которые служат ключевыми элементами соответствующей концептуальной модели. Поскольку для выполнения этих вариантов использования необходимо аутентифицировать кредитную карточку, они оба обращаются к дополнительному сервису "Проверка ПИН-кода кредитной карточки". Как следует из существа выдвигаемых к банкомату функциональных требований, этот сервис может выступать в качестве отдельного варианта использования разрабатываемой диаграммы и соединяться с первыми двумя вариантами отношением включения. Соответствующая диаграмма вариантов использования может включать в себя только указанных двух актеров и три варианта использования (рис. 4.1).

Рис. 4.1. Диаграмма вариантов использования для модели банкомата
На следующем этапе разработки модели вариантов использования для рассматриваемой системы банкомата следует дополнить данную диаграмму текстовым сценарием, написанным на основе предложенного ранее шаблона (табл. 4.1). Этот сценарий будет дополнять диаграмму, раскрывая содержание и логическую последовательность отдельных действий , которые выполняются системой и актерами в процессе снятия наличных по кредитной карточке.
В этом случае сценарий удобно представить в виде трех таблиц, каждая из которых описывает отдельный раздел шаблона.
В главном разделе сценария (табл. 4.2) указывается имя рассматриваемого варианта использования, имена взаимосвязанных с ним актеров, цель выполнения варианта, условный тип и ссылки на другие варианты использования.
| Снятие наличных по кредитной карточке |
| Клиент, Банк |
| Получение требуемой суммы наличными |
| Клиент запрашивает требуемую сумму. Банкомат обеспечивает доступ к счету клиента. Банкомат выдает клиенту наличные. |
| Базовый |
| Включает в себя ВИ: |
1. Клиент вставляет кредитную карточку в устройство чтения банкомата Исключение №1: Кредитная карточка недействительна | 2. Банкомат проверяет кредитную карточку 3. Банкомат предлагает ввести ПИН-код |
4. Клиент вводит персональный PIN-код Исключение №2: Клиент вводит неверный ПИН-код | 5. Банкомат проверяет ПИН-код 6. Банкомат отображает опции меню |
7. Клиент выбирает снятие наличных со своего счета | 8. Система делает запрос в Банк и выясняет текущее состояние счета клиента 9. Банкомат предлагает ввести требуемую сумму |
10. Клиент вводит требуемую сумму 11. Банк проверяет введенную сумму Исключение №3: Требуемая сумма превышает сумму на счете клиента | 12. Банкомат изменяет состояние счета клиента, выдает наличные и чек |
13. Клиент получает наличные и чек | 14. Банкомат предлагает клиенту забрать кредитную карточку |
15. Клиент получает свою кредитную карточку | 16. Банкомат отображает сообщение о готовности к работе |
В третьем разделе сценария (табл. 4.4) описывается последовательность действий, выполняемых при возникновении исключительных ситуаций или исключений.
| Исключение №1. Кредитная карточка недействительна или неверно вставлена | |
3. Банкомат отображает информацию о неверно вставленной кредитной карточке 14. Банкомат возвращает клиенту его кредитную карточку | |
15. Клиент получает свою кредитную карточку | |
Исключение №2. Клиент вводит неверный ПИН-код | |
6. Банкомат отображает информацию о неверном ПИН-коде | |
4. Клиент вводит новый ПИН-код | |
Исключение №3. Требуемая сумма превышает сумму на счете клиента | |
12. Банкомат отображает информацию о превышении кредита | |
10. Клиент вводит новую требуемую сумму | |
Отдельные небольшие по своему объему сценарии могут быть размещены на диаграмме в форме примечаний.
Примечание (note) предназначено для включения в модель произвольной текстовой информации, имеющей непосредственное отношение к контексту разрабатываемого проекта.
В качестве такой информации могут быть комментарии разработчика (например, дата и версия разработки диаграммы или ее отдельных компонентов), ограничения (например, на значения отдельных связей или экземпляры сущностей) и помеченные значения. Применительно к диаграммам вариантов использования примечание может иметь уточняющую информацию, относящуюся к контексту тех или иных вариантов использования.
Графически примечания на всех типах диаграмм обозначаются прямоугольником с "загнутым" верхним правым уголком (рис. 4.2). Собственно текст примечания размещается внутри этого прямоугольника. Примечание может относиться к любому элементу диаграммы, в этом случае их соединяет пунктирная линия. Если примечание относится к нескольким элементам, то от него проводятся соответственно, несколько линий. Как уже отмечалось, примечания могут присутствовать не только на диаграмме вариантов использования, но и на других канонических диаграммах.

Рис. 4.2. Примеры примечаний на диаграммах вариантов использования
Если в примечании указывается ключевое слово <
В этом случае сценарий удобно представить в виде трех таблиц, каждая из которых описывает отдельный раздел шаблона.
В главном разделе сценария (табл. 4.2) указывается имя рассматриваемого варианта использования, имена взаимосвязанных с ним актеров, цель выполнения варианта, условный тип и ссылки на другие варианты использования.
| Снятие наличных по кредитной карточке |
| Клиент, Банк |
| Получение требуемой суммы наличными |
| Клиент запрашивает требуемую сумму. Банкомат обеспечивает доступ к счету клиента. Банкомат выдает клиенту наличные. |
| Базовый |
| Включает в себя ВИ: |
1. Клиент вставляет кредитную карточку в устройство чтения банкомата Исключение №1: Кредитная карточка недействительна | 2. Банкомат проверяет кредитную карточку 3. Банкомат предлагает ввести ПИН-код |
4. Клиент вводит персональный PIN-код Исключение №2: Клиент вводит неверный ПИН-код | 5. Банкомат проверяет ПИН-код 6. Банкомат отображает опции меню |
7. Клиент выбирает снятие наличных со своего счета | 8. Система делает запрос в Банк и выясняет текущее состояние счета клиента 9. Банкомат предлагает ввести требуемую сумму |
10. Клиент вводит требуемую сумму 11. Банк проверяет введенную сумму Исключение №3: Требуемая сумма превышает сумму на счете клиента | 12. Банкомат изменяет состояние счета клиента, выдает наличные и чек |
13. Клиент получает наличные и чек | 14. Банкомат предлагает клиенту забрать кредитную карточку |
15. Клиент получает свою кредитную карточку | 16. Банкомат отображает сообщение о готовности к работе |
В третьем разделе сценария (табл. 4.4) описывается последовательность действий, выполняемых при возникновении исключительных ситуаций или исключений.
| Исключение №1. Кредитная карточка недействительна или неверно вставлена | |
3. Банкомат отображает информацию о неверно вставленной кредитной карточке 14. Банкомат возвращает клиенту его кредитную карточку | |
15. Клиент получает свою кредитную карточку | |
Исключение №2. Клиент вводит неверный ПИН-код | |
6. Банкомат отображает информацию о неверном ПИН-коде | |
4. Клиент вводит новый ПИН-код | |
Исключение №3. Требуемая сумма превышает сумму на счете клиента | |
12. Банкомат отображает информацию о превышении кредита | |
10. Клиент вводит новую требуемую сумму | |
Отдельные небольшие по своему объему сценарии могут быть размещены на диаграмме в форме примечаний.
Примечание (note) предназначено для включения в модель произвольной текстовой информации, имеющей непосредственное отношение к контексту разрабатываемого проекта.
В качестве такой информации могут быть комментарии разработчика (например, дата и версия разработки диаграммы или ее отдельных компонентов), ограничения (например, на значения отдельных связей или экземпляры сущностей) и помеченные значения. Применительно к диаграммам вариантов использования примечание может иметь уточняющую информацию, относящуюся к контексту тех или иных вариантов использования.
Графически примечания на всех типах диаграмм обозначаются прямоугольником с "загнутым" верхним правым уголком (рис. 4.2). Собственно текст примечания размещается внутри этого прямоугольника. Примечание может относиться к любому элементу диаграммы, в этом случае их соединяет пунктирная линия. Если примечание относится к нескольким элементам, то от него проводятся соответственно, несколько линий. Как уже отмечалось, примечания могут присутствовать не только на диаграмме вариантов использования, но и на других канонических диаграммах.

Рис. 4.2. Примеры примечаний на диаграммах вариантов использования
Если в примечании указывается ключевое слово <
Рекомендации по разработке диаграмм вариантов использования
Как было отмечено ранее, одно из главных назначений диаграммы вариантов использования заключается в формализации функциональных требований к системе. Диаграмма вариантов использования может служить основой для согласования с заказчиком функциональных требований к системе на ранней стадии проектирования. Любой из базовых вариантов использования в последующем может быть подвергнут декомпозиции на частные варианты использования. При этом рекомендуется, чтобы общее количество актеров в модели не превышало 20, а вариантов использования -50. В противном случае модель теряет свою наглядность и, возможно, заменяет собой одну из некоторых других диаграмм.Для разработки диаграммы вариантов использования рекомендуется некоторая последовательность действий:
Семантика построения диаграммы вариантов использования должна определяться следующими особенностями рассмотренных выше элементов модели. Отдельный экземпляр варианта использования по своему содержанию является выполнением последовательности действий, которая инициализируется посредством экземпляра сообщения от экземпляра актера.
В качестве отклика или ответной реакции на сообщение актера выполняется последовательность действий, установленная для данного варианта использования. При этом актеры могут генерировать новые сообщения для инициирования вариантов использования.
Подобное взаимодействие будет продолжаться до тех пор, пока не закончится выполнение требуемой последовательности действий экземпляром варианта использования, и указанный в модели экземпляр актера не получит требуемый экземпляр сервиса. Окончание взаимодействия означает отсутствие инициализации сообщений от актеров для базовых вариантов использования.
Варианты использования могут быть дополнительно специфицированы примечаниями с текстом, которые в последующем могут стать прототипами операций и методов совместно с атрибутами. Дальнейшая разработка моделей связана с реализацией вариантов использования в виде графа деятельности, посредством конечного автомата или любого другого механизма логического представления поведения, включающего предусловия и постусловия. Взаимодействие между вариантами использования и актерами может уточняться на диаграмме кооперации, когда описываются взаимосвязи между системой, содержащей эти варианты использования, и окружением или внешней средой этой системы.
В случае, когда для представления иерархической структуры проектируемой системы применяются подсистемы, система может быть определена в виде вариантов использования на всех уровнях. Отдельные подсистемы или классы могут реализовывать собственные варианты использования. При этом наиболее общий или абстрактный вариант использования в последующем может уточняться множеством частных вариантов использования, каждый из которых будет определять сервис элемента модели, содержащийся в сервисе исходной системы. В этом контексте общий вариант использования может рассматриваться как суперсервис для уточняющих его вариантов использования, которые, в свою очередь, могут рассматриваться как подсервисы исходного варианта использования.
Отдельные варианты использования нижнего уровня могут участвовать в нескольких кооперациях, т.
е. играть определенную роль при выполнении сервисов нескольких вариантов верхнего уровня. Для отдельных таких коопераций могут быть определены соответствующие роли актеров, взаимодействующих с конкретными вариантами использования нижнего уровня. Эти роли будут играть актеры нижнего уровня модели системы. Некоторые из таких актеров могут быть актерами верхнего уровня, но это не противоречит принятым в языке UML семантическим правилам построения диаграмм вариантов использования.
Однако следует заметить, что структура элемента-контейнера не может быть представлена вариантами использования, поскольку они могут представлять только функциональность отдельных элементов модели. Подчиненные варианты использования могут только кооперироваться для совместного выполнения суперсервиса варианта использования верхнего уровня. Эта кооперация также представляется на диаграмме кооперации в виде совместных действий отдельных элементов модели.
Окружение вариантов использования нижнего уровня - самостоятельный элемент модели, который, в свою очередь, может содержать другие элементы модели, определенные для этих вариантов использования. Таким образом, с точки зрения общего представления концептуальной модели взаимодействие между вариантами использования нижнего уровня определяет результат выполнения сервиса варианта верхнего уровня.
Реализация варианта использования зависит от типа элемента модели, в котором он определен. Например, варианты использования моделируемой программной системы могут быть реализованы посредством операций классов модели. Применительно к бизнес-системам варианты использования могут реализоваться сотрудниками этой системы. Во всех случаях элементы системы должны взаимодействовать друг с другом для совместного обеспечения требуемого поведения и выполнения вариантов использования модели.
Если в качестве моделируемой сущности выступает подсистема нижнего уровня, то отдельные пользователи вариантов использования этой подсистемы моделируются актерами. Такие актеры, в свою очередь, могут являться внутренними сотрудниками по отношению к моделируемым системам верхних уровней, что зачастую в явном виде не указываются на диаграммах.Эти элементы модели могут содержаться в других пакетах или подсистемах. В последнем случае роли актеров определяются в том пакете, к которому относится соответствующая подсистема.
Если варианты использования применяются для спецификации части системы, то они будут эквивалентны соответствующим вариантам использования в модели подсистемы соответствующего пакета. При этом важно понимать, что все функциональные требования к системе должны быть явно специфицированы на диаграмме вариантов использования, и никаких других сервисов, которые отсутствуют на данной диаграмме, проектируемая система не может выполнять по определению. Более того, если для моделирования поведения системы используются сразу несколько моделей, то множество вариантов использования всех пакетов системы должно быть эквивалентно множеству вариантов использования модели в целом.

![]() | © 2003-2007 INTUIT.ru. Все права защищены. |
Атрибуты класса
Атрибут (attribute) — содержательная характеристика класса, описывающая множество значений, которые могут принимать отдельные объекты этого класса.Атрибут класса служит для представления отдельного свойства или признака, который является общим для всех объектов данного класса. Атрибуты класса записываются во второй сверху секции прямоугольника класса. Эту секцию часто называют секцией атрибутов.
В языке UML принята определенная стандартизация записи атрибутов класса, которая подчиняется некоторым синтаксическим правилам. Каждому атрибуту класса соответствует отдельная строка текста, которая состоит из квантора видимости атрибута, имени атрибута, его кратности, типа значений атрибута и, возможно, его исходного значения. Общий формат записи отдельного атрибута класса следующий:
<квантор видимости> <имя атрибута> [кратность] : <тип атрибута> = <исходное значение> {строка-свойство}.
Видимость (visibility) — качественная характеристика описания элементов класса, характеризующая потенциальную возможность других объектов модели оказывать влияние на отдельные аспекты поведения данного класса.
Видимость в языке UML специфицируется с помощью квантора видимости (visibility), который может принимать одно из 4-х возможных значений и отображаться при помощи специальных символов.
Атрибут с этой областью видимости недоступен или невиден для всех классов за пределами пакета, в котором определен класс-владелец данного атрибута.
Квантор видимости может быть опущен. Его отсутствие означает, что видимость атрибута не указывается. Эта ситуация отличается от принятых по умолчанию соглашений в традиционных языках программирования, когда отсутствие квантора видимости трактуется как public или private. Однако вместо условных графических обозначений можно записывать соответствующее ключевое слово: public, protected, private, package.
Имя атрибута представляет собой строку текста, которая используется в качестве идентификатора соответствующего атрибута и поэтому должна быть уникальной в пределах данного класса. Имя атрибута - единственный обязательный элемент синтаксического обозначения атрибута, должно начинаться со строчной (малой) буквы и не должно содержать пробелов.
Кратность (multiplicity) — спецификация области значений допустимой мощности, которой могут обладать соответствующие множества.
Кратность атрибута характеризует общее количество конкретных атрибутов данного типа, входящих в состав отдельного класса. В общем случае кратность записывается в форме строки текста из цифр в квадратных скобках после имени соответствующего атрибута, при этом цифры разделяются двумя точками: [нижняя граница .. верхняя граница], где нижняя и верхняя границы положительные целые числа. Каждая такая пара служит для обозначения отдельного замкнутого интервала целых чисел, у которого нижняя (верхняя) граница равна значению нижняя граница (верхняя). В качестве верхней границы может использоваться специальный символ "*" (звездочка), который означает произвольное положительное целое число, т.е. неограниченное сверху значение кратности соответствующего атрибута.
Интервалов кратности для отдельного атрибута может быть несколько. В этом случае их совместное использование соответствует теоретико-множественному объединению соответствующих интервалов. Значения кратности из интервала следуют в монотонно возрастающем порядке без пропуска отдельных чисел, лежащих между нижней и верхней границами.
При этом придерживаются следующего правила: соответствующие нижние и верхние границы интервалов включаются в значение кратности.
Если в качестве кратности указывается единственное число, то кратность атрибута принимается равной данному числу. Если же указывается единственный знак "*", то это означает, что кратность атрибута может быть произвольным положительным целым числом или нулем. В языке UML кратность широко используется также для задания ролей ассоциаций, составных объектов и значений атрибутов. Если кратность атрибута не указана, то по умолчанию в языке UML принимается ее значение равное [1..1], т. е. в точности 1.
Тип атрибута представляет собой выражение, семантика которого определяется некоторым типом данных, определенным в пакете Типы данных языка UML или самим разработчиком. В нотации UML тип атрибута иногда определяется в зависимости от языка программирования, который предполагается использовать для реализации данной модели. В простейшем случае тип атрибута указывается строкой текста, имеющей осмысленное значение в пределах пакета или модели, к которым относится рассматриваемый класс.
Исходное значение служит для задания начального значения соответствующего атрибута в момент создания отдельного экземпляра класса. Здесь необходимо придерживаться правила принадлежности значения типу конкретного атрибута. Если исходное значение не указано, то значение соответствующего атрибута не определено на момент создания нового экземпляра класса. С другой стороны, конструктор объекта может переопределять исходное значение в процессе выполнения программы, если в этом возникает необходимость.
При задании атрибутов могут быть использованы дополнительные синтаксические конструкции — это подчеркивание строки атрибута, пояснительный текст в фигурных скобках и косая черта перед именем атрибута. Подчеркивание строки атрибута означает, что соответствующий атрибут общий для всех объектов данного класса, т.е. его значение у всех создаваемых объектов одинаковое (аналог ключевого слова static в некоторых языках программирования).
Пояснительный текст в фигурных скобках может означать две различные конструкции. Если в этой строке имеется знак равенства, то вся запись Строка-свойство служит для указания дополнительных свойств атрибута, которые могут характеризовать особенности изменения значений атрибута в ходе выполнения программы. Фигурные скобки как раз и обозначают фиксированное значение соответствующего атрибута для класса в целом, которое должны принимать все вновь создаваемые экземпляры класса без исключения. Это значение принимается за исходное значение атрибута, которое не может быть переопределено в последующем. Отсутствие строки-свойства по умолчанию трактуется так, что значение соответствующего атрибута может быть изменено в программе.
Знак "/" перед именем атрибута указывает на то, что данный атрибут является производным от некоторого другого атрибута этого же класса.
Производный атрибут (derived element) — атрибут класса, значение которого для отдельных объектов может быть вычислено посредством значений других атрибутов этого же объекта.
Имя класса
Имя класса должно быть уникальным в пределах пакета, который может содержать одну или несколько диаграмм классов. Имя указывается в самой верхней секции прямоугольника, поэтому она часто называется секцией имени класса. В дополнение к общему правилу именования элементов языка UML, имя класса записывается по центру секции имени полужирным шрифтом и должно начинаться с заглавной буквы. Рекомендуется в качестве имен классов использовать существительные, записанные по практическим соображениям без пробелов. Необходимо помнить, что имена классов образуют словарь предметной области при ООАП.В секции имени класса могут также находиться стереотипы или ссылки на стандартные шаблоны, от которых образован данный класс и, соответственно, от которых он наследует атрибуты и операции. В этой секции может также приводиться информация о разработчике данного класса и статус состояния разработки. Здесь также могут записываться и другие общие свойства этого класса, имеющие отношение к другим классам диаграммы или стандартным элементам языка UML.
Класс может иметь или не иметь экземпляров или объектов. В зависимости от этого в языке UML различают конкретные и абстрактные классы.
Конкретный класс (concrete class) — класс, на основе которого могут быть непосредственно созданы экземпляры или объекты.
Рассмотренные выше обозначения относятся к конкретным классам. От них следует отличать абстрактные классы.
Абстрактный класс (abstract class) — класс, который не имеет экземпляров или объектов.
Для обозначения имени абстрактного класса используется наклонный шрифт (курсив). В языке UML принято общее соглашение о том, что любой текст, относящийся к абстрактному элементу, записывается курсивом. Это имеет принципиальное значение, поскольку является семантическим аспектом описания абстрактных элементов языка UML.
В некоторых случаях необходимо явно указать, к какому пакету относится тот или иной класс. Для этой цели используется специальный символ разделитель – двойное двоеточие - (::). Синтаксис строки имени класса в этом случае будет следующий: <Имя пакета>::<Имя класса>. Другими словами, перед именем класса должно быть явно указано имя пакета, к которому его следует отнести. Например, если определен пакет с именем Банк, то класс Счет в этом банке может быть записан в виде: Банк::Счет.
Интерфейс
Интерфейс (interface) — именованное множество операций, которые характеризуют поведение отдельного элемента модели.Интерфейс в контексте языка UML является специальным случаем класса, у которого имеются операции, но отсутствуют атрибуты. Для обозначения интерфейса используется специальный графический символ окружность или стандартный способ – прямоугольник класса со стереотипом <
На диаграмме вариантов использования интерфейс изображается в виде маленького круга, рядом с которым записывается его имя (рис. 5.5, а). В качестве имени может использоваться существительное, которое характеризует соответствующую информацию или сервис, например, "Датчик температуры", "Форма ввода", "Сирена", "Видеокамера" (рис. 5.5, б). С учетом языка реализации модели имя интерфейса, как и имена других классов, рекомендуется записывать на английском и начинать с заглавной буквы I, например, ITemperatureSensor, IsecureInformation (рис. 5.5, в).

Рис. 5.5. Примеры графического изображения интерфейсов на диаграммах классов
Интерфейсы на диаграмме служат для спецификации таких элементов модели, которые видимы извне, но их внутренняя структура остается скрытой от клиентов. Интерфейсы не могут содержать ни атрибутов, ни состояний, ни направленных ассоциаций. Они содержат только операции без указания особенностей их реализации. Формально интерфейс не только отделяет спецификацию операций системы от их реализации, но и определяет общие границы проектируемой системы. В последующем интерфейс может быть уточнен явным указанием тех операций, которые специфицируют отдельный аспект поведения системы. Графическое изображение интерфейсов в форме окружности могут использоваться и на других типах канонических диаграмм, например, диаграммах компонентов и развертывания.
Класс
Класс (class) — абстрактное описание множества однородных объектов, имеющих одинаковые атрибуты, операции и отношения с объектами других классов.Графически класс в нотации языка UML изображается в виде прямоугольника, который дополнительно может быть разделен горизонтальными линиями на разделы или секции (рис. 5.1). В этих секциях могут указываться имя класса, атрибуты и операции класса.

Рис. 5.1. Варианты графического изображения класса на диаграмме классов
На начальных этапах разработки диаграммы отдельные классы могут обозначаться простым прямоугольником, в котором должно быть указано имя соответствующего класса (рис. 5.1, а). По мере проработки отдельных компонентов диаграммы описание классов дополняется атрибутами (рис. 5.1, б) и операциями (рис. 5.1, в). Четвертая секция (рис. 5.1, г) не обязательна и служит для размещения дополнительной информации справочного характера, например, об исключениях или ограничениях класса, сведения о разработчике или языке реализации. Предполагается, что окончательный вариант диаграммы содержит наиболее полное описание классов, которые состоят из трех или четырех секций.
Даже если секции атрибутов и операций пусты, в обозначении класса они должны быть выделены горизонтальной линией, с тем чтобы отличить класс от других элементов языка UML. Примеры графического изображения конкретных классов приведены на рис. 5.2. В первом случае для класса Окружность (рис. 5.2, а) указаны только его атрибуты – точка на координатной плоскости, которая определяет расположение ее центра. Для класса Окно (рис. 5.2, б) указаны только его операции, при этом секция его атрибутов оставлена пустой. Для класса Счет (рис. 5.2, в) дополнительно изображена четвертая секция, в которой указано требование – реализовать резервное копирование объектов этого класса.

Рис. 5.2. Примеры графического изображения конкретных классов
Операции класса
Операция (operation) - это сервис, предоставляемый каждым экземпляром или объектом класса по требованию своих клиентов, в качестве которых могут выступать другие объекты, в том числе и экземпляры данного класса.Операции класса записываются в третьей сверху секции прямоугольника класса, которую часто называют секцией операций. Совокупность операций характеризует функциональный аспект поведения всех объектов данного класса. Запись операций класса в языке UML также стандартизована и подчиняется определенным синтаксическим правилам. При этом каждой операции класса соответствует отдельная строка, которая состоит из квантора видимости операции, имени операции, выражения типа возвращаемого операцией значения и, возможно, строка-свойство данной операции. Общий формат записи отдельной операции класса следующий:
<квантор видимости> <имя операции>( список параметров): <выражение типа возвращаемого значения> {строка-свойство}
Квантор видимости, как и в случае атрибутов класса, может принимать одно из четырех возможных значений и, соответственно, отображается при помощи специального символа либо ключевого слова. Символ "+" обозначает операцию с областью видимости типа общедоступный (public). Символ "#" обозначает операцию с областью видимости типа защищенный (protected). Символ "-" используется для обозначения операции с областью видимости типа закрытый (private). И, наконец, символ "~" используется для обозначения операции с областью видимости типа пакетный (package).
Квантор видимости для операции может быть опущен. В этом случае его отсутствие просто означает, что видимость операции не указывается. Вместо условных графических обозначений также можно записывать соответствующее ключевое слово: public, protected, private, package.
Имя операции представляет собой строку текста, которая используется в качестве идентификатора соответствующей операции и поэтому должна быть уникальной в пределах данного класса. Имя операции - единственный обязательный элемент синтаксического обозначения операции, должно начинаться со строчной (малой) буквы, и, как правило, записываться без пробелов.
Список параметров является перечнем разделенных запятой формальных параметров, каждый из которых, в свою очередь, может быть представлен в следующем виде:
<направление параметра> <имя параметра>: <выражение типа> = <значение параметра по умолчанию>.
Параметр (parameter) — спецификация переменной операции, которая может быть изменена, передана или возвращена.
Параметр может включать имя, тип, направление и значение по умолчанию. Направление параметра — есть одно из ключевых слов in, out или inout со значением in по умолчанию, в случае если вид параметра не указывается. Имя параметра есть идентификатор соответствующего формального параметра, при записи которого следуют правилам задания имен атрибутов. Выражение типа является спецификацией типа данных для допустимых значений соответствующего формального параметра. Наконец, значение по умолчанию в общем случае представляет собой некоторое конкретное значение для этого формального параметра.
Выражение типа возвращаемого значения также указывает на тип данных значения, которое возвращается объектом после выполнения соответствующей операции. Две точки и выражение типа возвращаемого значения могут быть опущены, если операция не возвращает никакого значения. Для указания нескольких возвращаемых значений данный элемент спецификации операции может быть записан в виде списка отдельных выражений.
Операция с областью действия на весь класс показывается подчеркиванием имени и строки выражения типа. В этом случае под областью действия операции понимаются все объекты этого класса. В этом случае вся строка записи операции подчеркивается.
Строка-свойство служит для указания значений свойств, которые могут быть применены к данной операции. Строка-свойство может отсутствовать, если свойства не специфицированы.
Список формальных параметров и тип возвращаемого значения не обязателен. Квантор видимости атрибутов и операций может быть указан в виде специального значка или символа, которые используются для графического представления моделей в инструментальном средстве.Еще раз следует напомнить, что имена операций, так же как атрибутов и параметров, записываются со строчной (малой) буквы, а их типы параметров — с заглавной (большой) буквы. При этом обязательной частью строки записи операции является наличие имени операции и круглых скобок.
Расширение языка UML для построения моделей программного обеспечения и бизнес-систем
Одним из несомненных достоинств языка UML является наличие механизмов расширения, которые позволяют ввести в рассмотрение дополнительные графические обозначения, ориентированные для решения задач из определенной предметной области. Язык UML содержит два специальных расширения: профиль для процесса разработки программного обеспечения (The UML Profile for Software Development Processes) и профиль для бизнес-моделирования (The UML Profile for Business Modeling).В рамках первого из них предложено три специальных графических примитива, которые могут быть использованы для уточнения семантики отдельных классов при построении различных диаграмм:
Класс-сущность (entity class) — пассивный класс, информация о котором должна храниться постоянно и не уничтожаться с выключением системы. Класс-сущность содержит информацию, которая должна храниться постоянно и не уничтожается с уничтожением объектов данного класса или прекращением работы моделируемой системы, связанные с выключением системы или завершением программы. Как правило, этот класс соответствует отдельной таблице базы данных. В этом случае его атрибуты являются полями таблицы, а операции – присоединенными или хранимыми процедурами. Этот класс пассивный и лишь принимает сообщения от других классов модели.
Класс- сущность может быть изображен также стандартным образом в форме прямоугольника класса со стереотипом <

Рис. 5.3. Графическое изображение классов для моделирования программного обеспечения
В рамках второго профиля также предложено три специальных графических примитива, которые могут быть использованы для уточнения семантики отдельных классов при построении моделей бизнес-систем:

Рис. 5.4. Графическое изображение классов для моделирования бизнес-систем
Отношение агрегации
Агрегация (aggregation) - специальная форма ассоциации, которая служит для представления отношения типа "часть-целое" между агрегатом (целое) и его составной частью.Отношение агрегации имеет место между несколькими классами в том случае, если один из классов представляет собой сущность, которая включает в себя в качестве составных частей другие сущности. Данное отношение имеет фундаментальное значение для описания структуры сложных систем, поскольку применяется для представления системных взаимосвязей типа "часть-целое". Раскрывая внутреннюю структуру системы, отношение агрегации показывает, из каких элементов состоит система, и как они связаны между собой.
С точки зрения модели отдельные части системы могут выступать в виде, как элементов, так и подсистем, которые, в свою очередь, тоже могут состоять из подсистем или элементов. Таким образом, данное отношение по своей сути описывает декомпозицию или разбиение сложной системы на более простые составные части, которые также могут быть подвергнуты декомпозиции, если в этом возникнет необходимость.
Очевидно, что рассматриваемое в таком аспекте деление системы на составные части представляет собой иерархию, но принципиально отличную от той, которая порождается отношением обобщения. Отличие заключается в том, что части системы никак не обязаны наследовать ее свойства и поведение, поскольку являются самостоятельными сущностями. Более того, части целого обладают собственными атрибутами и операциями, которые существенно отличаются от атрибутов и операций целого.
Графически отношение агрегации изображается сплошной линией, один из концов которой представляет собой не закрашенный внутри ромб. Этот ромб указывает на тот класс, который представляет собой "целое" или класс-контейнер. Остальные классы являются его "частями" (рис. 6.9).

Рис. 6.9. Графическое изображение отношения агрегации в языке UML
В качестве примера отношения агрегации можно рассмотреть взаимосвязь типа "часть-целое", которая имеет место между классом Системный блок персонального компьютера и его составными частями: Процессор, Материнская плата, Оперативная память, Жесткий диск и Дисковод гибких дисков. Используя обозначения языка UML, компонентный состав системного блока можно представить в виде соответствующей диаграммы классов (рис. 6.10), которая в данном случае иллюстрирует отношение агрегации.

Рис. 6.10. Диаграмма классов для иллюстрации отношения агрегации на примере системного блока ПК
Отношение ассоциации
Ассоциация (association) - семантическое отношение между двумя и более классами, которое специфицирует характер связи между соответствующими экземплярами этих классов.Отношение ассоциации соответствует наличию произвольного отношения или взаимосвязи между классами. Данное отношение, как уже отмечалось в лекции 3, обозначается сплошной линией со стрелкой или без нее и с дополнительными символами, которые характеризуют специальные свойства ассоциации. Ассоциации рассматривались при изучении элементов диаграммы вариантов использования, применительно к диаграммам классов, тем не менее, семантика этого типа отношений значительно шире. В качестве дополнительных специальных символов могут использоваться имя ассоциации, символ навигации, а также имена и кратность классов-ролей ассоциации.
Имя ассоциации - необязательный элемент ее обозначения. Однако если оно задано, то записывается с заглавной буквы рядом с линией ассоциации. Отдельные классы ассоциации могут играть определенную роль в соответствующем отношении, на что явно указывает имя концевых точек ассоциации на диаграмме.
Наиболее простой случай данного отношения - бинарная ассоциация (binary association), которая служит для представления произвольного отношения между двумя классами. Она связывает в точности два различных класса и может быть ненаправленным (симметричным) или направленным отношением. Частный случай бинарной ассоциации - рефлексивная ассоциация, которая связывает класс с самим собой. Ненаправленная бинарная ассоциация изображается линией без стрелки. Для нее на диаграмме может быть указан порядок чтения классов с использованием значка в форме треугольника рядом с именем данной ассоциации.
В качестве простого примера ненаправленной бинарной ассоциации можно рассмотреть отношение между двумя классами - классом Компания и классом Сотрудник (рис. 6.1). Они связаны между собой бинарной ассоциацией Работает, имя которой указано на рисунке рядом с линией ассоциации. Для данного отношения определен следующий порядок чтения следования классов - сотрудник работает в компании.

Рис. 6.1. Графическое изображение ненаправленной бинарной ассоциации между классами
Направленная бинарная ассоциация изображается сплошной линией с простой стрелкой на одной из ее концевых точек. Направление этой стрелки указывает на то, какой класс является первым, а какой - вторым.
В качестве простого примера направленной бинарной ассоциации можно рассмотреть отношение между двумя классами - классом Клиент и классом Счет (рис. 6.2). Они связаны между собой бинарной ассоциацией с именем Имеет, для которой определен порядок следования классов. Это означает, что конкретный объект класса Клиент всегда должен указываться первым при рассмотрении взаимосвязи с объектом класса Счет. Другими словами, эти объекты классов образуют кортеж элементов, например, <клиент, счет_1, счет_2,…, счет_n>.

Рис. 6.2. Графическое изображение направленной бинарной ассоциации между классами
Частный случай отношения ассоциации - так называемая исключающая ассоциация (Xor-association). Семантика данной ассоциации указывает на то, что из нескольких потенциально возможных вариантов данной ассоциации в каждый момент времени может использоваться только один. На диаграмме классов исключающая ассоциация изображается пунктирной линией, соединяющей две и более ассоциации (рис. 6.3), рядом с которой записывается ограничение в форме строки текста в фигурных скобках: {xor}.

Рис. 6.3. Графическое изображение исключающей ассоциации между тремя классами
Тернарная ассоциация связывает отношением три класса. Ассоциация более высокой арности называется n-арной ассоциацией.
n-арная ассоциация (n-ary association) - ассоциация между тремя и большим числом классов.
Каждый экземпляр такой ассоциации представляет собой упорядоченный набор (кортеж), содержащий n экземпляров из соответствующих классов. Такая ассоциация связывает отношением более чем три класса, при этом класс может участвовать в ассоциации более чем один раз.
Каждый экземпляр n-арной ассоциации представляет собой n- арный кортеж, состоящий из объектов соответствующих классов. В этом контексте бинарная ассоциация является частным случаем n-арной ассоциации, когда значение n=2, но имеет собственное обозначение. Бинарная ассоциация - это специальный случай n-арной ассоциации.
Графически n-арная ассоциация обозначается ромбом, от которого ведут линии к символам классов данной ассоциации. Сам же ромб соединяется с символами классов сплошными линиями. Обычно линии проводятся от вершин ромба или от середины его сторон. Имя n-арной ассоциации записывается рядом с ромбом соответствующей ассоциации. Однако порядок классов в n-арной ассоциации, в отличие от порядка множеств в отношении, на диаграмме не фиксируется.
В качестве примера тернарной ассоциации можно рассмотреть отношение между тремя классами: Сотрудник, Компания и Проект. Данная ассоциация указывает на наличие отношения между этими тремя классами, которое может представлять информацию о проектах, реализуемых в компании, и о сотрудниках, участвующих в выполнении отдельных проектов (рис. 6.4).

Рис. 6.4. Графическое изображение тернарной ассоциации между тремя классами
Класс может быть присоединен к линии ассоциации пунктирной линией. Это означает, что данный класс обеспечивает поддержку свойств соответствующей n-арной ассоциации, а сама n-арная ассоциация имеет атрибуты, операции и/или ассоциации. Другими словами, такая ассоциация является классом с соответствующим обозначением в виде прямоугольника и самостоятельным элементом языка UML - ассоциацией классом (Association Class).
Ассоциация класс (association class) - модельный элемент, который одновременно является ассоциацией и классом. Ассоциация класс может рассматриваться как ассоциация, которая обладает свойствами класса, или как класс, имеющий также свойства ассоциации.
Как уже упоминалось, отдельный класс в ассоциации может играть определенную роль в данной ассоциации. Эта роль может быть явно специфицирована на диаграмме классов.
С этой целью в языке UML вводится в рассмотрение специальный элемент - концевая точка ассоциации или конец ассоциации (Association End), который графически соответствует точке соединения линии ассоциации с отдельным классом.
Конец ассоциации (association end) - концевая точка ассоциации, которая связывает ассоциацию с классификатором.
Конец ассоциации - часть ассоциации, но не класса. Каждая ассоциация может иметь два или больше концов ассоциации. Наиболее важные свойства ассоциации указываются на диаграмме рядом с этими элементами ассоциации и должны перемещаться вместе с ними. Одним из таких дополнительных обозначений является имя роли отдельного класса, входящего в ассоциацию.
Роль (role) - имеющее имя специфическое поведение некоторой сущности, рассматриваемой в определенном контексте. Роль может быть статической или динамической.
Имя роли представляет собой строку текста рядом с концом ассоциации для соответствующего класса. Она указывает на специфическую роль, которую играет класс, являющийся концом рассматриваемой ассоциации. Имя роли не обязательный элемент обозначений и может отсутствовать на диаграмме.
Следующий элемент обозначений - кратность ассоциации. Кратность относится к концам ассоциации и обозначается в виде интервала целых чисел, аналогично кратности атрибутов и операций классов, но без прямых скобок. Этот интервал записывается рядом с концом соответствующей ассоциации и означает потенциальное число отдельных экземпляров класса, которые могут иметь место, когда остальные экземпляры или объекты классов фиксированы.
Так, для примера (рис. 6.4) кратность "1" для класса Компания означает, что каждый сотрудник может работать только в одной компании. Кратность "1..*" для класса Сотрудник означает, что в каждой компании могут работать несколько сотрудников, общее число которых заранее неизвестно и ничем не ограничено. Вместо кратности "1..*" нельзя записать только символ "*", поскольку последний означает кратность "0..*".Для данного примера это означало бы, что отдельные компании могут совсем не иметь сотрудников в своем штате. Такая кратность приемлема в ситуациях, когда в компании вообще не выполняется никаких проектов.
Имя ассоциации рассматривается в качестве отдельного атрибута у соответствующих классов ассоциаций и может быть указано на диаграмме явным способом в определенной секции прямоугольника класса.
Ассоциация является наиболее общей формой отношения в языке UML. Все другие типы рассматриваемых отношений можно считать частным случаем данного отношения. Однако важность выделения специфических семантических свойств и дополнительных характеристик для других типов отношений обусловливают необходимость их самостоятельного изучения при построении диаграмм классов. Поскольку эти отношения имеют специальные обозначения и относятся к базовым понятиям языка UML, следует перейти к их последовательному рассмотрению.
Отношение композиции
Композиция (composition) - разновидность отношения агрегации, при которой составные части целого имеют такое же время жизни, что и само целое. Эти части уничтожаются вместе с уничтожением целого.Отношение композиции - частный случай отношения агрегации. Это отношение служит для спецификации более сильной формы отношения "часть-целое", при которой составляющие части тесно взаимосвязаны с целым. Особенность этой взаимосвязи заключается в том, что части не могут выступать в отрыве от целого, т.е. с уничтожением целого уничтожаются и все его составные части.
Композит (composite) - класс, который связан отношением композиции с одним или большим числом классов.
Графически отношение композиции изображается сплошной линией, один из концов которой представляет собой закрашенный внутри ромб. Этот ромб указывает на тот класс, который представляет собой класс-композит. Остальные классы являются его "частями" (рис. 6.11).

Рис. 6.11. Графическое изображение отношения композиции в языке UML
Возможно, самым наглядным примером этого отношения является живая клетка в биологии, в отрыве от которой не могут существовать ее составные части. Другой практический пример - окно графического интерфейса программы, которое может состоять из строки заголовка, полос прокрутки, главного меню, рабочей области и строки состояния. Нетрудно заключить, что подобное окно представляет собой класс, а его составные элементы также являются отдельными классами. Последнее обстоятельство характерно для отношения композиции, поскольку отражает различные способы представления данного отношения.
Для отношений композиции и агрегации могут использоваться дополнительные обозначения, применяемые для отношения ассоциации. А именно, могут указываться кратности отдельных классов, которые в общем случае не обязательны. Применительно к описанному выше примеру класс Окно программы является классом-композитом, а взаимосвязи составляющих его частей могут быть изображены следующей диаграммой классов (рис. 6.12).

Рис. 6.12. Диаграмма классов для иллюстрации отношения композиции на примере класса-композита Окно программы
Отношение обобщения
Отношение обобщения является обычным таксономическим отношением или отношением классификации между более общим элементом (родителем или предком) и более частным или специальным элементом (дочерним или потомком).Обобщение (generalization) - таксономическое отношение между более общим понятием и менее общим понятием.
Менее общий элемент модели должен быть согласован с более общим элементом и может содержать дополнительную информацию. Данное отношение используется для представления иерархических взаимосвязей между различными элементами языка UML, такими как пакеты, классы, варианты использования.
Применительно к диаграмме классов данное отношение описывает иерархическое строение классов и наследование их свойств и поведения.
Наследование (inheritance) - специальный концептуальный механизм, посредством которого более специальные элементы включают в себя структуру и поведение более общих элементов.
Согласно одному из главных принципов методологии ООАП - наследованию, класс-потомок обладает всеми свойствами и поведением класса-предка, а также имеет собственные свойства и поведение, которые могут отсутствовать у класса-предка.
Родитель, предок (parent) - в отношении обобщения более общий элемент. Потомок (child) - специализация одного из элементов отношения обобщения, называемого в этом случае родителем.
На диаграммах отношение обобщения обозначается сплошной линией с треугольной стрелкой на одном из концов (рис. 6.5). Стрелка указывает на более общий класс (класс-предок или суперкласс), а ее начало - на более специальный класс (класс-потомок или подкласс).

Рис. 6.5. Графическое изображение отношения обобщения в языке UML
От одного класса-предка одновременно могут наследовать несколько классов-потомков, что отражает таксономический характер данного отношения. В этом случае на диаграмме классов для подобного отношения обобщения указывается несколько линий со стрелками.
Например, класс Транспортное средство (курсив обозначает абстрактный класс) может выступать в качестве суперкласса для подклассов, соответствующих конкретным транспортным средствам, таким как: Автомобиль, Автобус, Трактор и другим.
Это может быть представлено графически в форме диаграммы классов следующего вида (рис. 6.6).

Рис. 6.6. Пример графического изображения отношения обобщения для нескольких классов-потомков
С целью упрощения обозначений на диаграмме классов и уменьшения числа стрелок-треугольников и совокупности линий, обозначающих одно и то же отношение обобщения, может быть просто изображена стрелка. В этом случае отдельные линии сходятся к стрелке, которая имеет с этими линиями единственную точку пересечения (рис. 6.7).

Рис. 6.7. Альтернативный вариант графического изображения отношения обобщения классов для случая объединения отдельных линий
Графическое изображение отношения обобщения по форме соответствует графу специального вида, а именно - иерархическому дереву. Как нетрудно заметить, в этом случае класс-предок является корнем дерева, а классы-потомки - его листьями. Отличие заключается в возможности указания на диаграмме классов дополнительной семантической информации, которая может отражать различные теоретико-множественные характеристики данного отношения. При этом класс-предок на диаграмме может занимать произвольное положение относительно своих классов-потомков, определяемое лишь соображениями удобства.
В дополнение к простой стрелке обобщения может быть присоединена строка текста, указывающая на специальные свойства этого отношения в форме ограничения. Этот текст будет относиться ко всем линиям обобщения, которые идут к классам-потомкам. Поскольку отмеченное свойство касается всех подклассов данного отношения, именно поэтому спецификация этого свойства осуществляется в форме ограничения, которое должно быть записано в фигурных скобках.
В качестве ограничений могут быть использованы следующие ключевые слова языка UML:
А именно, предполагается, что на диаграмме указаны не все классы-потомки. В последующем возможно разработчик восполнит их перечень, не изменяя уже построенную диаграмму.
С учетом дополнительного использования стандартного ограничения диаграмма классов (рис. 6.7) может быть уточнена (рис. 6.8).

Рис. 6.8. Вариант уточненного графического изображения отношения обобщения классов с использованием строки-ограничения
Рекомендации по построению диаграмм классов
Процесс разработки диаграммы классов занимает центральное место при разработке проектов сложных систем. От умения правильно выбрать классы и установить между ними взаимосвязи часто зависит не только успех процесса проектирования, но и производительность выполнения программы. Как показывает практика ООАП, каждый программист в той или иной степени использует личный опыт при разработке новых проектов. Это обусловлено желанием свести новую задачу к уже решенным, чтобы иметь возможность применять не только проверенные фрагменты программного кода, но и отдельные компоненты или библиотеки компонентов.При определении классов, атрибутов и операций, задании их имен и типов перед российскими разработчиками всегда встает вопрос: какой язык взять за основу, русский или английский? С одной стороны, использование родного языка для описания модели кажется наиболее естественным способом ее представления и в наибольшей степени отражает коммуникативную функцию модели системы. С другой стороны, разработка модели всего лишь один из этапов создания соответствующей системы, а применение инструментальных средств для ее реализации в абсолютном большинстве случаев требует использования англоязычных терминов. Именно поэтому возникает характерная неоднозначность, с которой, по-видимому, совершенно незнакома англоязычная аудитория.
При построении диаграммы вариантов использования, общей концептуальной модели проектируемой системы, применение русскоязычных терминов оправдано с точки зрения описания структуры предметной области. Это способствует взаимопониманию, а также эффективному общению между заказчиком и разработчиком проекта. При построении остальных типов диаграмм следует придерживаться разумного компромисса.
После разработки диаграммы классов процесс ООАП может быть продолжен в двух направлениях. С одной стороны, если поведение системы тривиально, то можно приступить к разработке диаграмм кооперации и последовательности. Особенности построения диаграмм кооперации будут рассмотрены в следующей главе. Однако для сложных динамических систем, в частности для параллельных систем и систем реального времени, важнейшим аспектом их функционирования является поведение. Специфика поведения таких систем может быть представлена на диаграммах состояний и деятельности, разработка которых в общем случае не обязательна, а определяется конкретным проектом.
Кооперация
Кооперация (collaboration) — спецификация множества объектов отдельных классов, совместно взаимодействующих с целью реализации отдельных вариантов использования в общем контексте моделируемой системы.Понятие кооперации – одно из фундаментальных в языке UML. Цель самой кооперации состоит в том, чтобы специфицировать особенности реализации отдельных вариантов использования или наиболее значимых операций в системе. Кооперация определяет структуру поведения системы в терминах взаимодействия участников этой кооперации.
На диаграмме кооперации размещаются объекты, представляющие собой экземпляры классов, связи между ними, которые в свою очередь являются экземплярами ассоциаций и сообщения. Связи дополняются стрелками сообщений, при этом показываются только те объекты, которые участвуют в реализации моделируемой кооперации. Далее, как и на диаграмме классов, показываются структурные отношения между объектами в виде различных соединительных линий. Связи могут дополняться именами ролей, которые играют объекты в данной взаимосвязи. И, наконец, изображаются динамические взаимосвязи — потоки сообщений в форме стрелок с указанием направления рядом с соединительными линиями между объектами, при этом задаются имена сообщений и их порядковые номера в общей последовательности сообщений.
Одна и та же совокупность объектов может участвовать в реализации различных коопераций. В зависимости от рассматриваемой кооперации, могут изменяться как связи между отдельными объектами, так и поток сообщений между ними. Именно это отличает диаграмму кооперации от диаграммы классов, на которой должны быть указаны все без исключения классы, их атрибуты и операции, а также все ассоциации и другие структурные отношения между элементами модели.
Объекты и их графическое изображение
Объект(object) — сущность с хорошо определенными границами и индивидуальностью, которая инкапсулирует состояние и поведение.В контексте языка UML любой объект является экземпляром класса, описанного в модели и представленного на диаграмме классов. Объект создается на этапе реализации модели или выполнения программы. Он имеет собственное имя и конкретные значения атрибутов. Следует рассмотреть особенности семантики и графической нотации объектов, из которых строятся диаграммы.
Для диаграмм кооперации полное имя объекта в целом представляет собой строку текста, разделенную двоеточием и записанную в формате:
<собственное имя объекта >'/'<Имя роли класса>:<Имя класса >.
Имя роли класса указывается в том случае, когда соответствующий класс отсутствует в модели или разработчику необходимо акцентировать внимание на особенности его использования в рассматриваемом контексте моделирования взаимодействия. Имя класса – это имя одного из классов, представленного на диаграмме классов. Важно отметить, что вся запись имени объекта подчеркивается, что является визуальным признаком объектов на различных диаграммах языка UML.
Если указано собственное имя объекта, то оно должно начинаться со строчной буквы. В тоже время имя объекта, имя роли с символом "/" или имя класса могут отсутствовать. Однако двоеточие всегда должно стоять перед именем класса, а косая черта – перед именем роли.
Таким образом, на диаграммах кооперации могут встретиться следующие варианты возможных записей полного имени объекта:
о : C– объект с собственным именем о, экземпляр класса С.
: C– анонимный объект, экземпляр класса С.
о :(или просто о) — объект-сирота с собственным именем о.
о / R : C— объект с собственным именем о, экземпляр класса С, играющий роль R.
/ R : C— анонимный объект, экземпляр класса С, играющий роль R.
о / R— объект-сирота с собственным именем о, играющий роль R.
/ R— анонимный объект и одновременно объект-сирота, играющий роль R.
Примеры изображения объектов на диаграммах кооперации приводятся на рис. 7.1.

Рис. 7.1. Примеры графических изображений объектов на диаграммах кооперации уровня примеров
Если собственное имя объекта отсутствует, то такой объект принято называть анонимным. Однако в этом случае обязательно ставится двоеточие перед именем соответствующего класса (рис. 7.1, в). Отсутствовать может и имя класса – такой объект называется сиротой. Для него записывается только собственное имя объекта, двоеточие не ставится, имя класса не указываются (рис. 7.1, г). Если для объектов указываются атрибуты, то в большинстве случаев они принимают конкретные значения (рис. 7.1, б). Для отдельных объектов (рис. 7.1, д, е) могут быть дополнительно указаны роли, которые они играют в кооперации.
В контексте языка UML все объекты делятся на две категории: пассивные и активные. Пассивный объект оперирует только данными и не может инициировать деятельность по управлению другими объектами. Однако пассивные объекты могут посылать сигналы в процессе выполнения запросов, которые они обрабатывают. На диаграмме кооперации пассивные объекты изображаются обычным образом без дополнительных стереотипов.
Активный объект (active object) имеет собственный процесс управления и может инициировать деятельность по управлению другими объектами.
Активный объект на диаграмме кооперации обозначаются прямоугольником с утолщенными границами (рис. 7.2). Каждый активный объект является владельцем определенного процесса управления. В данном фрагменте диаграммы кооперации активный объект а : Клиент является инициатором открытия счета, который представлен анонимным объектом : Счет.

Рис. 7.2. Графическое изображение активного объекта (слева) на диаграмме кооперации
Мультиобъект(multiobject) представляет собой множество анонимных объектов, которые могут быть образованы на основе одного класса.
На диаграмме кооперации мультиобъект используется для того, чтобы показать операции и сигналы, которые адресованы всему множеству анонимных объектов.
Мультиобъект изображается двумя прямоугольниками, один из которых выступает из-за верхней правой вершины другого (рис. 7.2, а). При этом стрелка взаимосвязи относится ко всему множеству объектов, которые обозначает данный мультиобъект. На диаграмме кооперации может быть явно указано отношение агрегации (композиции) между мультиобъектом и отдельным объектом из его множества (рис. 7.3, б).

Рис. 7.3. Графическое изображение мультиобъектов на диаграмме кооперации
В следующем примере рассматривается ситуация с отправкой почтового сообщений клиенту из редактора электронной почты (рис. 7.4). Анонимный активный объект класса РедакторEmail вначале посылает сообщение анонимному мультиобъекту класса Клиент. Это сообщение инициирует выбор единственного объекта класса Клиент, удовлетворяющего дополнительным условиям. После этого выбранному объекту посылается сообщение о необходимости отправить электронное письмо.

Рис. 7.4. Фрагмент диаграммы кооперации для выбора адреса клиента для отправки электронного письма
Составной объект (composite object) или объект-композит предназначен для представления объекта, имеющего собственную структуру и внутренние потоки (нити) управления.
Составной объект является экземпляром класса-композита, который связан отношением композиции со своими частями. Аналогичные отношения связывают между собой и соответствующие объекты. На диаграммах кооперации такой составной объект изображается как обычный объект, состоящий из двух секций: верхней и нижней. В верхней секции записывается имя составного объекта, а в нижней – его объекты-части вместо списка атрибутов (рис. 7.5). При этом допускается иметь в качестве частей другие составные объекты.

Рис. 7.5. Графическое изображение составного объекта на диаграмме кооперации
При изображении диаграммы кооперации отношения между объектами описываются с помощью связей, которые являются экземплярами соответствующих ассоциаций.
Рекомендации по построению диаграмм кооперации
Построение диаграммы кооперации можно начинать сразу после построения диаграммы классов. При разработке диаграмм кооперации вначале изображаются объекты и связи между ними. Далее на диаграмму кооперации необходимо нанести все сообщения, указав их порядок и другие семантические особенности. Диаграмма кооперации может содержать только те объекты и связи, которые уже определены на построенной ранее диаграмме классов. В противном случае, если возникает необходимость включения в диаграмму кооперации объектов, которые создаются на основе отсутствующих классов, то диаграмма классов должна быть модифицирована посредством включения в нее явного описания этих классов.Процесс построения диаграммы кооперации должен быть согласован с процессами построения диаграммы классов и диаграммы последовательности. В первом случае, как уже отмечалось, необходимо следить за использованием только тех объектов, для которых определены порождающие их классы. Во втором случае необходимо согласовывать последовательности передаваемых сообщений. Речь идет о том, что не допускается различный порядок следования сообщений для моделирования одного и того же взаимодействия на диаграмме кооперации и диаграмме последовательности.
Необходимо помнить, что диаграмма кооперации, с одной стороны, обеспечивает концептуально согласованный переход от статической модели диаграммы классов к динамическим моделям поведения, представляемым диаграммами последовательности, состояний и деятельности. С другой стороны, диаграмма этого типа предопределяет особенности реализации модели на диаграммах компонентов и развертывания, которые будут рассмотрены в последующих лекциях.
Сообщения и их графическое изображение
Сообщение (message) — спецификация передачи информации от одного элемента модели к другому с ожиданием выполнения определенных действий со стороны принимающего элемента.При этом первый объект предполагает, что после получения сообщения вторым объектом последует выполнение некоторого действия. На диаграмме кооперации сообщение является причиной или стимулом начала выполнения операций, отправки сигналов, создания и уничтожения отдельных объектов. Связь обеспечивает канал для направленной передачи сообщений между объектами от объекта-источника к объекту-получателю.
В этом смысле сообщение представляет собой законченный фрагмент информации, который отправляется одним объектом другому. При этом прием сообщения может инициировать выполнение определенных действий, направленных на решение отдельной задачи тем объектом, которому это сообщение отправлено. Сообщения не только передают информацию, но и требуют или предполагают от принимающего объекта выполнения ожидаемых действий. Сообщения могут инициировать выполнение операций объектом соответствующего класса, а параметры этих операций передаются вместе с сообщением.
В таком контексте каждое сообщение имеет направление от объекта, который инициирует и отправляет сообщение, к объекту, который его получает. Иногда отправителя сообщения называют клиентом, а получателя – сервером. При этом сообщение от клиента имеет форму запроса некоторого сервиса, а реакция сервера на запрос после получения сообщения может быть связана с выполнением определенных действий или передачи клиенту необходимой информации тоже в форме сообщения.
Сообщения в языке UML также специфицируют роли, которые играют объекты — отправитель и получатель сообщения. Сообщения на диаграмме кооперации изображаются дополнительными стрелками рядом с соответствующей связью или ролью ассоциации. Направление стрелки указывает на получателя сообщения. Внешний вид стрелки сообщения имеет определенный смысл. На диаграммах кооперации может использоваться один из трех типов стрелок для обозначения сообщений (рис. 7.7).
Каждый из термов представляет отдельный уровень процедурной вложенности в форме законченной итерации. Наиболее верхний уровень соответствует самому левому терму последовательности. Если все потоки управления параллельные, то вложенность отсутствует. Каждый терм последовательности имеет следующий синтаксис: [Целое число | Имя] [Рекуррентность].
'*''['Предложение-итерация']'для записи итеративного выполнения соответствующего выражения. Итерация представляет последовательность сообщений одного уровня вложенности. Предложение-итерация может быть опущено, если количество итераций никак не специфицируется. Наиболее часто предложение-итерация записывается на псевдокоде или языке программирования. В языке UML формат записи этого предложения строгим образом не определен.
'['Предложение-условие']'для записи ветвления. Эта форма записи специфицирует условие для данного сообщения, передача которого по данной ветви возможна только при его истинности.
В общем случае предложение-условие - обычное булевское выражение и предназначено для синхронизации отдельных нитей потока управления. Записывается в квадратных скобках и может быть опущено, если оно отсутствует у данного сообщения. Наличие этого условия обеспечивает передачу сообщения только в том случае, если это условие принимает значение "истина".
Предложение- условие может быть записано на обычном тексте, псевдокоде или некотором языке программирования.
Предложение-условие записывается так же, как и итерация, но без звездочки. Это можно понимать как некоторую одношаговую итерацию. В общем случае предполагается, что специфицированная итерация выполняется последовательно. Если необходимо отметить возможность параллельного выполнения итерации, то для этой цели в языке UML используется символ "*||". Итерация не распространяется на вложенные уровни данного потока или нити. Каждый уровень должен иметь собственное представление для итеративного повторения процедурной последовательности.
Имя сообщения, записанное в сигнатуре после возвращаемого значения, означает имя события, которое инициируется объектом-получателем сообщения после его приема. Наиболее часто таким событием является вызов операции у объекта-получателя. Это может быть реализовано различными способами, один из которых – явное указание в качестве имени сообщения вызываемой операции. Тогда соответствующая операция должна быть определена в том классе, которому принадлежит объект-получатель.
Список аргументов представляет собой разделенные запятыми и заключенные в круглые скобки действительные параметры той операции, вызов которой инициируется данным сообщением. Список аргументов может быть пустым, однако скобки все равно записываются. Для записи аргументов также может быть использован некоторый псевдокод или язык программирования.
В языке UML предусмотрены стандартные действия, выполняемые в ответ на получение соответствующего сообщения. Они могут быть явно указаны на диаграмме кооперации в форме стереотипа перед именем сообщения, к которому они относятся, или выше его. В этом случае они записываются в угловых кавычках.
В языке UML определены следующие стереотипы сообщений:
<
<
<
<
<

Рис. 7.7. Графическое изображение различных типов сообщений на диаграмме кооперации
Каждое сообщение может быть помечено строкой текста, которая имеет следующий формат:
<Предшествующие сообщения> <Выражение последовательности> <Возвращаемое значение := имя сообщения> <(Список аргументов)>
Предшествующие сообщения — это разделенные запятыми номера сообщений, записанные перед наклонной чертой: <Номер сообщения','>* <'/'>. Если список номеров сообщений пуст, то вся запись, включая наклонную черту, опускается. Если номера сообщений указываются, то они должны соответствовать номерам других сообщений на этой же диаграмме кооперации. Смысл указания предшествующих сообщений заключается в том, что данное сообщение не может быть передано, пока не будут переданы своим адресатам все сообщения, номера которых записаны в данном списке.
Выражение последовательности — это разделенный точками список отдельных термов последовательностей, после которого записывается двоеточие: <Терм последовательности'.'…> ':'
Каждый из термов представляет отдельный уровень процедурной вложенности в форме законченной итерации. Наиболее верхний уровень соответствует самому левому терму последовательности. Если все потоки управления параллельные, то вложенность отсутствует. Каждый терм последовательности имеет следующий синтаксис: [Целое число | Имя] [Рекуррентность].
'*''['Предложение-итерация']'для записи итеративного выполнения соответствующего выражения. Итерация представляет последовательность сообщений одного уровня вложенности. Предложение-итерация может быть опущено, если количество итераций никак не специфицируется. Наиболее часто предложение-итерация записывается на псевдокоде или языке программирования. В языке UML формат записи этого предложения строгим образом не определен.
'['Предложение-условие']'для записи ветвления. Эта форма записи специфицирует условие для данного сообщения, передача которого по данной ветви возможна только при его истинности.
В общем случае предложение-условие - обычное булевское выражение и предназначено для синхронизации отдельных нитей потока управления. Записывается в квадратных скобках и может быть опущено, если оно отсутствует у данного сообщения. Наличие этого условия обеспечивает передачу сообщения только в том случае, если это условие принимает значение "истина".
Предложение- условие может быть записано на обычном тексте, псевдокоде или некотором языке программирования.
Предложение-условие записывается так же, как и итерация, но без звездочки. Это можно понимать как некоторую одношаговую итерацию. В общем случае предполагается, что специфицированная итерация выполняется последовательно. Если необходимо отметить возможность параллельного выполнения итерации, то для этой цели в языке UML используется символ "*||". Итерация не распространяется на вложенные уровни данного потока или нити. Каждый уровень должен иметь собственное представление для итеративного повторения процедурной последовательности.
Имя сообщения, записанное в сигнатуре после возвращаемого значения, означает имя события, которое инициируется объектом-получателем сообщения после его приема. Наиболее часто таким событием является вызов операции у объекта-получателя. Это может быть реализовано различными способами, один из которых – явное указание в качестве имени сообщения вызываемой операции. Тогда соответствующая операция должна быть определена в том классе, которому принадлежит объект-получатель.
Список аргументов представляет собой разделенные запятыми и заключенные в круглые скобки действительные параметры той операции, вызов которой инициируется данным сообщением. Список аргументов может быть пустым, однако скобки все равно записываются. Для записи аргументов также может быть использован некоторый псевдокод или язык программирования.
В языке UML предусмотрены стандартные действия, выполняемые в ответ на получение соответствующего сообщения. Они могут быть явно указаны на диаграмме кооперации в форме стереотипа перед именем сообщения, к которому они относятся, или выше его. В этом случае они записываются в угловых кавычках.
В языке UML определены следующие стереотипы сообщений:
<
<
<
<
<
Связи на диаграмме кооперации
Связь(link) — любое семантическое отношение между некоторой совокупностью объектов.Связь как элемент языка UML является экземпляром или примером произвольной ассоциации и может иметь место между двумя и более объектами. Бинарная связь на диаграмме кооперации изображается отрезком сплошной линии, соединяющей два прямоугольника объектов (рис. 7.4). На концах этой линии дополнительно могут быть явно указаны имена ролей соответствующей ассоциации.
Связи не имеют собственных имен, поскольку идентичны как экземпляры некоторой ассоциации. Другими словами, все связи на диаграмме кооперации могут быть только анонимными и при необходимости записываются без двоеточия перед именем ассоциации. Однако чаще всего имена связей на диаграммах кооперации не указываются. Для связей не указывается также и кратность концевых точек. Однако другие обозначения специальных случаев отношений, такие как агрегация и композиция, могут присутствовать на отдельных концах связей. Например, символ связи типа агрегации между мультиобъектом класса Клиент и отдельным анонимным объектом класса Клиент (рис. 7.4).
Примеры связей с различными стереотипами изображены на рис. 7.6. Здесь представлена обобщенная схема компании с именем с, которая состоит из департаментов (анонимный мультиобъект класса Департамент). В последние входят сотрудники (анонимный мультиобъект класса Сотрудник). Рефлексивная связь указывает на то, что руководитель департамента является одновременно и его сотрудником.

Рис. 7.6. Графическое изображение связей с различными стереотипами
Как было отмечено выше, особенности моделирования взаимодействия в контексте языка UML заключаются в том, чтобы специфицировать коммуникацию между множеством взаимодействующих объектов. Каждое взаимодействие описывается совокупностью сообщений, которыми участвующие в нем объекты обмениваются между собой.
Объекты и их изображение на диаграмме последовательности
На диаграмме последовательности также изображаются объекты, которые непосредственно участвуют во взаимодействии, при этом никакие статические связи с другими объектами не визуализируются. Для диаграммы последовательности ключевым моментом является именно динамика взаимодействия объектов во времени. При этом диаграмма последовательности имеет как бы два измерения. Одно - слева направо в виде вертикальных линий, каждая из которых изображает линию жизни отдельного объекта, участвующего во взаимодействии. Второе измерение диаграммы последовательности - вертикальная временная ось, направленная сверху вниз.Каждый объект графически изображается в форме прямоугольника и располагается в верхней части своей линии жизни (рис. 8.1). Внутри прямоугольника записываются собственное имя объекта со строчной буквы и имя класса, разделенные двоеточием. При этом вся запись подчеркивается, что является признаком объекта, который, как указывалось ранее, представляет собой экземпляр класса.
Для объектов диаграммы последовательности остаются справедливыми правила именования, рассмотренные ранее применительно к диаграммам кооперации. Если на диаграмме последовательности отсутствует собственное имя объекта, то при этом должно быть указано имя класса. Такой объект считается анонимным. Может отсутствовать и имя класса, но при этом должно быть указано собственное имя объекта. Такой объект считается сиротой. Роль классов в именах объектов на диаграммах последовательности, как правило, не указывается.
Крайним слева на диаграмме изображается объект - инициатор моделируемого процесса взаимодействия (объект a на рис. 8.1). Правее - другой объект, который непосредственно взаимодействует с первым. Таким образом, порядок расположения объектов на диаграмме последовательности определяется исключительно соображениями удобства визуализации их взаимодействия друг с другом.

Рис. 8.1. Графические элементы диаграммы последовательности
Начальному моменту времени соответствует самая верхняя часть диаграммы.
При этом процесс взаимодействия объектов реализуется посредством сообщений, которые посылаются одними объектами другим. Сообщения изображаются в виде горизонтальных стрелок с именем сообщения и образуют определенный порядок относительно времени своей инициализации. Другими словами, сообщения, расположенные на диаграмме последовательности выше, передаются раньше тех, которые расположены ниже. При этом масштаб на оси времени не указывается, поскольку диаграмма последовательности моделирует лишь временную упорядоченность взаимодействий типа "раньше-позже".
Линия жизни объекта (object lifeline) - вертикальная линия на диаграмме последовательности, которая представляет существование объекта в течение определенного периода времени.
Линия жизни объекта изображается пунктирной вертикальной линией, ассоциированной с единственным объектом на диаграмме последовательности. Линия жизни служит для обозначения периода времени, в течение которого объект существует в системе и, следовательно, может потенциально участвовать во всех ее взаимодействиях. Если объект существует в системе постоянно, то и его линия жизни должна продолжаться по всей рабочей области диаграммы последовательности от самой верхней ее части до самой нижней (объект 1 и анонимный объект Класса 2 на рис. 8.1).
Отдельные объекты, закончив выполнение своих операций, могут быть уничтожены , чтобы освободить занимаемые ими ресурсы. Для таких объектов линия жизни обрывается в момент его уничтожения. Для обозначения момента уничтожения объекта в языке UML применяется специальный символ в форме латинской буквы "X". На рис. 8.2 этот символ используется для уничтожения анонимного объекта, образованного от Класса 3 . Ниже этого символа пунктирная линия не изображается, поскольку соответствующего объекта в системе уже нет, и этот объект должен быть исключен из всех последующих взаимодействий

Рис. 8.2. Графическое изображение линий жизни и фокусов управления объектов
Вовсе не обязательно создавать все объекты в начальный момент времени.
Отдельные объекты в системе могут создаваться по мере необходимости, существенно экономя ресурсы системы и повышая ее производительность. В этом случае прямоугольник такого объекта изображается не в верхней части диаграммы последовательности, а в той, которая соответствует моменту создания объекта (анонимный объект, образованный от Класса 3 на рис. 8.2). При этом прямоугольник объекта вертикально располагается в том месте диаграммы, которое по оси времени совпадает с моментом его возникновения в системе. Объект создается со своей линией жизни а, возможно, и с фокусом управления.
В процессе функционирования объектно-ориентированных систем одни объекты могут находиться в активном состоянии, непосредственно выполняя определенные действия, или в состоянии пассивного ожидания сообщений от других объектов. Фокус управления - символ, применяемый для того, чтобы явно выделить подобную активность объектов на диаграммах последовательности.
Фокус управления (focus of control) - специальный символ на диаграмме последовательности, указывающий период времени, в течение которого объект выполняет некоторое действие, находясь в активном состоянии.
Фокус управления изображается в форме вытянутого узкого прямоугольника (объект а на рис. 8.1), верхняя сторона которого обозначает начало получения фокуса управления объекта (начало активности), а ее нижняя сторона - окончание фокуса управления (окончание активности). Этот прямоугольник располагается ниже обозначения соответствующего объекта и может заменять его линию жизни (объект a на рис. 8.2), если на всем ее протяжении он активен.
Периоды активности объекта могут чередоваться с периодами его пассивности или ожидания. В этом случае у такого объекта фокусы управления изменяют свое изображение на линию жизни и наоборот (объект сирота ob2 на рис. 8.2). Важно понимать, что получить фокус управления может только объект, у которого в этот момент имеется линия жизни. Если же объект был уничтожен, то вновь возникнуть в системе он уже не может.
Вместо него может быть создан лишь экземпляр этого же класса, который, строго говоря, будет другим объектом.
В отдельных случаях инициатором взаимодействия в системе может быть актер или внешний пользователь. При этом актер изображается на диаграмме последовательности самым первым объектом слева со своим фокусом управления (рис. 8.3). Наиболее часто актер и его фокус управления будут существовать в системе постоянно, отмечая характерную для пользователя активность в инициировании взаимодействий с системой. Актер может иметь собственное имя либо оставаться анонимным.
В отдельных случаях объект может посылать сообщения самому себе, инициируя так называемые рефлексивные сообщения. Для этой цели служит специальное изображение (сообщение у объекта а на рис. 8.3). Такие сообщения изображаются в форме сообщения, начало и конец которого соприкасаются с линией жизни или фокусом управления одного и того же объекта. Подобные ситуации возникают, например, при обработке нажатий на клавиши клавиатуры при вводе текста в редактируемый документ, при наборе цифр номера телефона абонента.
Если в результате рефлексивного сообщения создается новый подпроцесс или нить управления, то говорят о рекурсивном или вложенном фокусе управления. На диаграмме последовательности рекурсия обозначается небольшим прямоугольником, присоединенным к правой стороне фокуса управления того объекта, для которого изображается данное рекурсивное взаимодействие (анонимный объект Класса 2 на рис. 8.3).

Рис. 8.3. Графическое изображение актера, рефлексивного сообщения и рекурсии на диаграмме последовательности
При этом процесс взаимодействия объектов реализуется посредством сообщений, которые посылаются одними объектами другим. Сообщения изображаются в виде горизонтальных стрелок с именем сообщения и образуют определенный порядок относительно времени своей инициализации. Другими словами, сообщения, расположенные на диаграмме последовательности выше, передаются раньше тех, которые расположены ниже. При этом масштаб на оси времени не указывается, поскольку диаграмма последовательности моделирует лишь временную упорядоченность взаимодействий типа "раньше-позже".
Линия жизни объекта (object lifeline) - вертикальная линия на диаграмме последовательности, которая представляет существование объекта в течение определенного периода времени.
Линия жизни объекта изображается пунктирной вертикальной линией, ассоциированной с единственным объектом на диаграмме последовательности. Линия жизни служит для обозначения периода времени, в течение которого объект существует в системе и, следовательно, может потенциально участвовать во всех ее взаимодействиях. Если объект существует в системе постоянно, то и его линия жизни должна продолжаться по всей рабочей области диаграммы последовательности от самой верхней ее части до самой нижней (объект 1 и анонимный объект Класса 2 на рис. 8.1).
Отдельные объекты, закончив выполнение своих операций, могут быть уничтожены , чтобы освободить занимаемые ими ресурсы. Для таких объектов линия жизни обрывается в момент его уничтожения. Для обозначения момента уничтожения объекта в языке UML применяется специальный символ в форме латинской буквы "X". На рис. 8.2 этот символ используется для уничтожения анонимного объекта, образованного от Класса 3 . Ниже этого символа пунктирная линия не изображается, поскольку соответствующего объекта в системе уже нет, и этот объект должен быть исключен из всех последующих взаимодействий

Рис. 8.2. Графическое изображение линий жизни и фокусов управления объектов
Вовсе не обязательно создавать все объекты в начальный момент времени.
Отдельные объекты в системе могут создаваться по мере необходимости, существенно экономя ресурсы системы и повышая ее производительность. В этом случае прямоугольник такого объекта изображается не в верхней части диаграммы последовательности, а в той, которая соответствует моменту создания объекта (анонимный объект, образованный от Класса 3 на рис. 8.2). При этом прямоугольник объекта вертикально располагается в том месте диаграммы, которое по оси времени совпадает с моментом его возникновения в системе. Объект создается со своей линией жизни а, возможно, и с фокусом управления.
В процессе функционирования объектно-ориентированных систем одни объекты могут находиться в активном состоянии, непосредственно выполняя определенные действия, или в состоянии пассивного ожидания сообщений от других объектов. Фокус управления - символ, применяемый для того, чтобы явно выделить подобную активность объектов на диаграммах последовательности.
Фокус управления (focus of control) - специальный символ на диаграмме последовательности, указывающий период времени, в течение которого объект выполняет некоторое действие, находясь в активном состоянии.
Фокус управления изображается в форме вытянутого узкого прямоугольника (объект а на рис. 8.1), верхняя сторона которого обозначает начало получения фокуса управления объекта (начало активности), а ее нижняя сторона - окончание фокуса управления (окончание активности). Этот прямоугольник располагается ниже обозначения соответствующего объекта и может заменять его линию жизни (объект a на рис. 8.2), если на всем ее протяжении он активен.
Периоды активности объекта могут чередоваться с периодами его пассивности или ожидания. В этом случае у такого объекта фокусы управления изменяют свое изображение на линию жизни и наоборот (объект сирота ob2 на рис. 8.2). Важно понимать, что получить фокус управления может только объект, у которого в этот момент имеется линия жизни. Если же объект был уничтожен, то вновь возникнуть в системе он уже не может.
Вместо него может быть создан лишь экземпляр этого же класса, который, строго говоря, будет другим объектом.
В отдельных случаях инициатором взаимодействия в системе может быть актер или внешний пользователь. При этом актер изображается на диаграмме последовательности самым первым объектом слева со своим фокусом управления (рис. 8.3). Наиболее часто актер и его фокус управления будут существовать в системе постоянно, отмечая характерную для пользователя активность в инициировании взаимодействий с системой. Актер может иметь собственное имя либо оставаться анонимным.
В отдельных случаях объект может посылать сообщения самому себе, инициируя так называемые рефлексивные сообщения. Для этой цели служит специальное изображение (сообщение у объекта а на рис. 8.3). Такие сообщения изображаются в форме сообщения, начало и конец которого соприкасаются с линией жизни или фокусом управления одного и того же объекта. Подобные ситуации возникают, например, при обработке нажатий на клавиши клавиатуры при вводе текста в редактируемый документ, при наборе цифр номера телефона абонента.
Если в результате рефлексивного сообщения создается новый подпроцесс или нить управления, то говорят о рекурсивном или вложенном фокусе управления. На диаграмме последовательности рекурсия обозначается небольшим прямоугольником, присоединенным к правой стороне фокуса управления того объекта, для которого изображается данное рекурсивное взаимодействие (анонимный объект Класса 2 на рис. 8.3).

Рис. 8.3. Графическое изображение актера, рефлексивного сообщения и рекурсии на диаграмме последовательности
Рекомендации по построению диаграмм последовательности
Построение диаграммы последовательности целесообразно начинать с выделения из всей совокупности классов только тех, объекты которых участвуют в моделируемом взаимодействии. После этого все объекты наносятся на диаграмму, с соблюдением порядка инициализации сообщений. Здесь необходимо установить, какие объекты будут существовать постоянно, а какие временно - только на период выполнения ими требуемых действий.Когда объекты визуализированы, можно приступать к спецификации сообщений. При этом необходимо учитывать те операции, которые имеют классы соответствующих объектов в модели системы. При необходимости уточнения этих операций следует использовать их стереотипы. Для уничтожения объектов, которые создаются на время выполнения своих действий, нужно предусмотреть явное сообщение. Наиболее простые случаи ветвления процесса взаимодействия можно изобразить на одной диаграмме с использованием соответствующих графических примитивов. В более сложных случаях для моделирования каждой ветви управления может потребоваться отдельная диаграмма последовательности. Следует помнить, что каждый альтернативный поток управления затрудняет понимание построенной модели.
Общим правилом является визуализация особенностей реализации каждого варианта использования на отдельной диаграмме последовательности. В этой ситуации отдельные диаграммы должны рассматриваться совместно как одна модель взаимодействия. Необходимость синхронизации сложных потоков управления, как правило, требуют введение в модель дополнительных ограничений. При этом общая запись таких ограничений должна следовать семантике языка объектных ограничений OCL.
Сообщения на диаграмме последовательности
Сообщения как элементы языка UML, уже рассматривались ранее при изучении диаграммы кооперации (лекция 7). Стрелки сообщений изображаются аналогично рассмотренным ранее, но применительно к диаграммам последовательности сообщения имеют дополнительные семантические особенности. При этом на диаграмме последовательности все сообщения упорядочены по времени своей передачи в моделируемой системе, хотя номера у них могут не указываться.На диаграммах последовательности могут присутствовать три разновидности сообщений, каждое из которых имеет свое графическое изображение (рис. 8.4).

Рис. 8.4. Графическое изображение различных видов сообщений между объектами на диаграмме последовательности
Первая разновидность сообщения (рис. 8.4, а) наиболее распространена и используется для вызова процедур, выполнения операций или обозначения отдельных вложенных потоков управления. Начало этой стрелки, как правило, соприкасается с фокусом управления того объекта-клиента, который инициирует это сообщение. Конец стрелки соприкасается с линией жизни того объекта, который принимает это сообщение и выполняет в ответ определенные действия. При этом принимающий объект может получить фокус управления, становясь в этом случае активным. Передающий объект может потерять фокус управления или остаться активным.
Вторая разновидность сообщения (рис. 8.4, б) используется для обозначения простого асинхронного сообщения, которое передается в произвольный момент времени. Передача такого сообщения обычно не сопровождается получением фокуса управления объектом-получателем.
Третья разновидность сообщения (рис. 8.4, в) используется для возврата из вызова процедуры. Примером может служить простое сообщение о завершении вычислений без предоставления результата расчетов объекту-клиенту. В процедурных потоках управления эта стрелка может быть опущена, поскольку ее наличие неявно предполагается в конце активизации объекта. В то же время считается, что каждый вызов процедуры имеет свою пару - возврат вызова.
Ветвление потока управления
Одна из особенностей диаграммы последовательности - возможность визуализировать простое ветвление процесса. Для изображения ветвления используются две или более стрелки, выходящие из одной точки фокуса управления объекта (объект ob1 на рис. 8.5). При этом рядом с каждой из них должно быть явно указано соответствующее условие ветви в форме булевского выражения.Количество ветвей может быть произвольным, однако наличие ветвлений может существенно усложнить интерпретацию диаграммы последовательности. Предложение-условие должно быть явно указано для каждой ветви и записывается в форме обычного текста, псевдокода или выражения языка программирования. Это выражение всегда должно возвращать некоторое булевское выражение. Запись этих условий должна исключать одновременную передачу альтернативных сообщений по двум и более ветвям. В противном случае на диаграмме последовательности может возникнуть конфликт ветвления.

Рис. 8.5. Графическое изображение бинарного ветвления потока управления на диаграмме последовательности
С помощью ветвления можно изобразить и более сложную логику взаимодействия объектов между собой (объект ob1 на рис. 8.6). Если условий более двух, то для каждого из них необходимо предусмотреть ситуацию единственного выполнения. Описанный ниже пример относится к моделированию взаимодействия программной системы обслуживания клиентов в банке. В этом примере диаграммы последовательности объект ob1 вызывает выполнение действий у одного из трех других объектов.
Условием ветвления может служить сумма снимаемых клиентом средств со своего текущего счета. Если эта сумма превышает 1500$, то могут потребоваться дополнительные действия, связанные с созданием и последующим разрушением объекта Класса 1. Если же сумма превышает 100$, но не превышает 1500$, то вызывается операция или процедура объекта ob3. И, наконец, если сумма не превышает 100$, то вызывается операция или процедура объекта ob2. При этом объекты ob1, ob2 и ob3 постоянно существуют в системе.
Последний объект создается от Класса 1 только в том случае, если справедливо первое из альтернативных условий. В противном случае он может быть никогда не создан.

Рис. 8.6. Графическое изображение тернарного ветвления потока управления на диаграмме последовательности
Объект ob1 имеет постоянный фокус управления, а все остальные объекты - получают фокус управления только для выполнения ими соответствующих операций.
На диаграммах последовательности при записи сообщений также могут использоваться стереотипы, рассмотренные ранее при построении диаграммы кооперации (лекция 7). Их семантика и синтаксис остаются без изменения, как они определены в нотации языка UML. Ниже представлена диаграмма последовательности для описанного выше случая ветвления, дополненная стереотипными значениями отдельных сообщений (рис. 8.7). Очевидно, эта диаграмма последовательности является более выразительной и простой для своей содержательной интерпретации.

Рис. 8.7. Диаграмма последовательности со стереотипными значениями сообщений
Как уже отмечалось ранее, сообщения могут иметь собственное имя, в качестве которого выступает имя операции, вызов которой инициируют эти сообщения у принимающего объекта. В этом случае рядом со стрелкой записывается имя операции с круглыми скобками, в которых могут указываться параметры или аргументы соответствующей операции. Если параметры отсутствуют, то скобки после имени операции все равно должны быть изображены.
Диаграмма состояний в контексте конечного автомата
Для систем различной природы и назначения характерно взаимодействие между собой отдельных образующих их элементов. Для представления динамических особенностей взаимодействия элементов модели в контексте реализации вариантов использования предназначены диаграммы кооперации и последовательности. Однако для моделирования процессов функционирования большинства сложных систем, особенно систем реального времени, этих представлений недостаточно.Диаграмма состояний (statechart diagram) - диаграмма, которая представляет конечный автомат.
Семантика понятия состояния довольно сложна. Дело в том, что характеристика состояний системы явным образом не зависит от логической структуры, зафиксированной на диаграмме классов. При рассмотрении состояний системы приходится отвлекаться от особенностей ее объектной структуры и мыслить категориями, описывающими динамический контекст поведения моделируемой системы. При построении диаграмм состояний необходимо использовать специальные понятия, о которых и пойдет речь в данной лекции.
Ранее отмечалось, что любая прикладная система характеризуется не только структурой составляющих ее элементов, но и некоторым поведением или функциональностью. Для общего представления функциональности моделируемой системы предназначены диаграммы вариантов использования, которые на концептуальном уровне описывают поведение системы в целом. Для того чтобы представить наиболее общее поведение на логическом уровне, следует ответить на вопрос: "В процессе какого поведения система реализует необходимую пользователям функциональность?".
Главное назначение диаграммы состояний - описать возможные последовательности состояний и переходов, которые в совокупности характеризуют поведение моделируемой системы в течение всего ее жизненного цикла. Диаграмма состояний представляет динамическое поведение сущностей, на основе спецификации их реакции на восприятие некоторых конкретных событий. Системы, которые реагируют на внешние действия от других систем или от пользователей, иногда называют реактивными.
Если такие действия инициируются в произвольные случайные моменты времени, то говорят об асинхронном поведении модели.
Диаграммы состояний чаще всего используются для описания поведения отдельных систем и подсистем. Они также могут быть применены для спецификации функциональности экземпляров отдельных классов, т. е. для моделирования всех возможных изменений состояний конкретных объектов. Диаграмма состояний по существу является графом специального вида, который служит для представления конечного автомата.
Диаграммы состояний могут быть вложены друг в друга, образуя вложенные диаграммы для более детального представления состояний отдельных элементов модели. Для понимания семантики конкретной диаграммы состояний необходимо представлять особенности поведения моделируемой сущности, а также иметь общие сведения из теории конечных автоматов.
Конечный автомат (state machine) - модель для спецификации поведения объекта в форме последовательности его состояний, которые описывают реакцию объекта на внешние события, выполнение объектом действий, а также изменение его отдельных свойств.
В контексте языка UML понятие конечного автомата обладает дополнительной семантикой. Вершинами графа конечного автомата являются состояния и другие типы элементов модели, которые изображаются соответствующими графическими символами. Дуги графа служат для обозначения переходов из состояния в состояние. Конечный автомат описывает поведение отдельного объекта в форме последовательности состояний, охватывающих все этапы его жизненного цикла, начиная от создания объекта и заканчивая его уничтожением. Каждая диаграмма состояний представляет собой конечный автомат.
Основными понятиями, характеризующими конечный автомат, являются состояние и переход. Ключевое различие между ними заключается в том, что длительность нахождения системы в отдельном состоянии существенно превышает время, которое затрачивается на переход из одного состояния в другое. Предполагается, что в пределе время перехода из одного состояния в другое равно нулю (если дополнительно ничего не сказано).Другими словами, переход объекта из состояния в состояние происходит мгновенно.
В общем случае конечный автомат представляет динамические аспекты моделируемой системы в виде ориентированного графа, вершины которого соответствуют состояниям, а дуги - переходам. При этом поведение моделируется как последовательное перемещение по графу состояний от вершины к вершине по связывающим их дугам с учетом их ориентации. Для графа состояний системы можно ввести в рассмотрение специальные свойства.
Среди таких свойств - выделение из всей совокупности состояний двух специальных: начального и конечного. Ни в графе состояний, ни на диаграмме состояний время нахождения системы в том или ином состоянии явно не учитывается, однако предполагается, что последовательность изменения состояний упорядочена во времени. Другими словами, каждое последующее состояние может наступить позже предшествующего ему состояния.
Переход и событие
Пребывание моделируемого объекта или системы в первом состоянии может сопровождаться выполнением некоторых внутренних действий или деятельности. При этом изменение текущего состояния объекта будет возможно либо после завершения этих действий (деятельности), либо при возникновении некоторых внешних событий. В обоих случаях говорят, что происходит переход объекта из одного состояния в другое.Переход (transition) - отношение между двумя состояниями, которое указывает на то, что объект в первом состоянии должен выполнить определенные действия и перейти во второе состояние.
Переход осуществляется при наступлении некоторого события: окончания выполнения деятельности (do activity), получении объектом сообщения или приемом сигнала. На переходе указывается имя события, а также действия, производимые объектом в ответ на внешние события при переходе из одного состояния в другое.
Переход может быть направлен в то же состояние, из которого он выходит. В этом случае его называют переходом в себя. Исходное и целевое состояния перехода в себя совпадают. Этот переход изображается петлей со стрелкой и отличается от внутреннего перехода. При переходе в себя объект покидает исходное состояние, а затем снова входит в него. При этом всякий раз выполняются внутренние действия, специфицированные метками entry и exit.
Срабатывание <перехода> (fire) - выполнение перехода из одного состояния в другое.
Срабатывание перехода может зависеть не только от наступления события, но и от выполнения определенного условия, называемого сторожевым. Объект перейдет из одного состояния в другое в том случае, если произошло указанное событие и сторожевое условие приняло значение "истина". До срабатывания перехода объект находится в предыдущем от него состоянии, называемым исходным, или в источнике (не путать с начальным состоянием - это разные понятия), а после его срабатывания объект находится в последующем от него состоянии (целевом состоянии).
На диаграмме состояний переход изображается сплошной линией со стрелкой, которая выходит из исходного состояния и направлена в целевое состояние (например, выход из строя на рис. 8.1).Каждый переход может быть помечен строкой текста, которая имеет следующий общий формат:
<имя события>'('<список параметров, разделенных запятыми>')' '['<сторожевое условие>']' <выражение действия>.
Событие (event) - спецификация существенных явлений в поведении системы, которые имеют местоположение во времени и пространстве.
Формально, событие представляет собой спецификацию факта, имеющего место в пространстве и во времени. Про события говорят, что они "происходят", при этом отдельные события должны быть упорядочены во времени. После наступления события нельзя уже вернуться к предыдущим, если такая возможность явно не предусмотрена в модели.
Семантика понятия события фиксирует внимание на внешних проявлениях качественных изменений, происходящих при переходе моделируемого объекта из состояния в состояние. Например, при включении электрического переключателя происходит событие, в результате которого комната освещается. После успешного ремонта компьютера также происходит немаловажное событие - восстановление его работоспособности. Если поднять трубку обычного телефона, то, в случае его исправности, мы ожидаем услышать тоновый сигнал. Это тоже является событием.
В языке UML события играют роль стимулов, которые инициируют переходы из одних состояний в другие. В качестве событий можно рассматривать сигналы, вызовы, окончание фиксированных промежутков времени или моменты окончания выполнения определенных действий. В зависимости от вида происходящих событий - стимулов в языке UML различают два типа переходов: триггерные и нетриггерные.
Переход называется триггерным, если его специфицирует событие-триггер, связанное с внешними условиями по отношению к рассматриваемому состоянию.
В этом случае рядом со стрелкой триггерного перехода обязательно указывается имя события в форме строки текста, начинающейся со строчной буквы. Наиболее часто в качестве имен триггерных переходов задают имена операций, вызываемых у тех или иных объектов системы. После имени такого события следуют круглые скобки для явного задания параметров соответствующей операции.
Если таких параметров нет, то список параметров со скобками может отсутствовать. Например, переход на рис. 9.4, а, является триггерным, поскольку с ним связано конкретное событие-триггер, происходящее асинхронно при срабатывании некоторого датчика.
Переход называется нетриггерным, если он происходит по завершении выполнения ду-деятельности в данном состоянии.
Нетриггерные переходы часто называют переходами по завершении ду-деятельности. Для них рядом со стрелкой перехода не указывается никакого имени события, а в исходном состоянии должна быть описана внутренняя ду-деятельность, по окончании которой произойдет тот или иной нетриггерный переход.

Рис. 9.4. Графическое изображение триггерного (а) и нетриггерного (б) переходов на диаграмме состояний
Сторожевое условие (guard condition) - логическое условие, записанное в прямых скобках и представляющее собой булевское выражение.
При этом булевское выражение должно принимать одно из двух взаимно исключающих значений: "истина" или "ложь". Из контекста диаграммы состояний должна явно следовать семантика этого выражения, а для записи выражения может использоваться обычный язык, псевдокод или язык программирования.
Дополнение триггерных и нетриггерных переходов сторожевыми условиями позволяет явно специфицировать семантику их срабатывания. Если сторожевое условие принимает значение "истина", то соответствующий переход при наступлении события-триггера или завершении деятельности может сработать, в результате чего объект перейдет в целевое состояние. Если же сторожевое условие принимает значение "ложь", то переход не может сработать, даже если произошло событие-триггер или завершилась деятельность в исходном состоянии. Очевидно, в случае невыполнения сторожевого условия моделируемый объект или система останется в исходном состоянии. Однако вычисление истинности сторожевого условия в модели происходит только после возникновения ассоциированного с ним события-триггера или завершения деятельности, которые инициируют соответствующий переход.
Поскольку общее количество выходящих переходов из любого состояния в языке UML не ограничено, хотя и является конечным, не исключена ситуация, когда из одного состояния могут выходить несколько переходов с идентичным событием-триггером. Каждый такой переход должен содержать собственное сторожевое условие, при этом никакие два или более сторожевых условий не должны одновременно принимать значение "истина". В противном случае на диаграмме состояний возникнет конфликт триггерных переходов, что делает несостоятельной (ill formed) модель системы в целом.
Аналогичное замечание справедливо и для нетриггерных переходов, когда из одного состояния выходят несколько переходов по завершении деятельности. Каждый из таких переходов также должен содержать собственное сторожевое условие, при этом никакие два или более сторожевых условий не должны одновременно принимать значение "истина". В противном случае на диаграмме состояний будет иметь место конфликт нетриггерных переходов, что также делает несостоятельной (ill formed) модель системы в целом.

Рис. 9.5. Триггерные и нетриггерные переходы на диаграмме состояний
Изображенный фрагмент диаграммы состояний (рис. 9.5) моделирует изменение состояний банкомата при проверке ПИН-кода. Нетриггерные переходы на данной диаграмме помечены сторожевыми условиями, которые исключают конфликт между ними. Что касается триггерного перехода, помеченного событием отмена транзакции, то он происходит независимо от проверки ПИН-кода в том случае, когда клиент решил отказаться от ввода ПИН-кода.
Выражение действия (action expression) представляет собой вызов операции или передачу сообщения, имеет атомарный характер и выполняется сразу после срабатывания соответствующего перехода до начала действий в целевом состоянии.
Выражение действия выполняется в том и только в том случае, когда переход срабатывает. Атомарность действия означает, что оно не может быть прервано никаким другим действием до тех пор, пока не закончится его выполнение.
Данное действие может оказывать влияние как на сам объект, так и на его окружение, если это с очевидностью следует из контекста модели. Данное выражение записывается после знака "/" в строке текста, присоединенной к соответствующему переходу.
В общем случае, выражение действия может содержать целый список отдельных действий, разделенных символом ";". Обязательное требование - все действия из списка должны четко различаться между собой и следовать в порядке их записи. На синтаксис записи выражений действия не накладывается никаких ограничений. Главное - их запись должна быть понятна разработчикам модели и программистам. Поэтому чаще всего выражения записывают на одном из языков программирования, который предполагается использовать для реализации модели.
В качестве примера выражения действия перехода (рис. 9.6) может служить отображение сообщения на экране банкомата в том случае, когда запрашиваемая клиентом сумма превосходит остаток на его счету. В случае если кредит не превышен, то происходит переход в состояние получения наличных.

Рис. 9.6. Выражение действия перехода на диаграмме состояний
Формализм конечных автоматов допускает вложение одних конечных автоматов в другие для уточнения внутренней структуры отдельных более общих состояний. В этом случае вложенные конечные автоматы получили название конечных подавтоматов. Подавтоматы могут использоваться для внутренней спецификации процедур и функций, реализация которых обусловливает поведение моделируемой системы или объекта. Моделирование параллельного поведения с помощью вложенных диаграмм состояний рассматривается в лекции 10.
Состояние и его графическое изображение
Моделирование поведения объектов и системы в целом основывается на понятии состояния.Состояние (state) - условие или ситуация в ходе жизненного цикла объекта, в течение которого он удовлетворяет логическому условию, выполняет определенную деятельность или ожидает события.
Состояние может быть задано в виде набора конкретных значений атрибутов объекта некоторого класса, при этом изменение отдельных значений этих атрибутов будет отражать изменение состояния моделируемого объекта или системы в целом. Однако не каждый атрибут класса может характеризовать состояние его объектов. Как правило, имеют значение только те свойства элементов системы, которые отражают динамический или функциональный аспект ее поведения. В этом случае состояние будет характеризоваться некоторым инвариантным условием, включающим в себя только принципиальные для поведения объекта или системы атрибуты классов и их значения.
Такое условие может соответствовать ситуации, когда моделируемый объект находится в состоянии ожидания возникновения внешнего события. В то же время нахождение объекта в некотором состоянии может быть связано с выполнением определенных действий. В последнем случае соответствующая деятельность начинается в момент перехода моделируемого элемента в рассматриваемое состояние, а после и элемент может покинуть данное состояние в момент завершения этой деятельности.
Состояние на диаграмме изображается прямоугольником со скругленными вершинами (рис. 9.1). Этот прямоугольник, в свою очередь, может быть разделен на две секции горизонтальной линией. Если указана лишь одна секция, то в ней записывается только имя состояния (рис. 9.1, а). В противном случае в первой из них записывается имя состояния, а во второй - список некоторых внутренних действий или переходов в данном состоянии (рис. 9.1, б). При этом под действием в языке UML понимают некоторую атомарную операцию, выполнение которой приводит к изменению состояния или возврату некоторого значения (например, "истина" или "ложь").

Рис. 9.1. Графическое изображение состояний на диаграмме состояний
Имя состояния представляет собой строку текста, которая раскрывает содержательный смысл или семантику данного состояния. Имя должно представлять собой законченное предложение и всегда записываться с заглавной буквы. Поскольку состояние системы является частью процесса ее функционирования, рекомендуется в качестве имени использовать глаголы в настоящем времени или соответствующие причастия. Как исключение, имя у состояния может отсутствовать, т. е. оно необязательно для некоторых состояний. В этом случае состояние является анонимным. Если на одной диаграмме состояний несколько анонимных состояний, то все они должны различаться между собой.
Действие (action) - спецификация выполнимого утверждения, которая образует абстракцию вычислительной процедуры.
Действие обычно приводит к изменению состояния системы, и может быть реализовано посредством передачи сообщения объекту, модификацией связи или значения атрибута. Для ряда состояний может потребоваться дополнительно указать действия, которые должны быть выполнены моделируемым элементом. Для этой цели служит добавочная секция в обозначении состояния, содержащая перечень внутренних действий или деятельность, которые производятся в процессе нахождения моделируемого элемента в данном состоянии. Каждое действие записывается в виде отдельной строки и имеет следующий формат:
<метка действия '/ ' выражение действия>
Метка действия указывает на обстоятельства или условия, при которых будет выполняться деятельность, определенная выражением действия. При этом выражение действия может использовать любые атрибуты и связи, принадлежащие области имен или контексту моделируемого объекта. Если список выражений действия пустой, то метка действия с разделителем в виде наклонной черты '/' не указывается. Перечень меток действий в языке UML фиксирован, причем эти метки не могут быть использованы в качестве имен событий:
Входное действие (entry action) - действие, которое выполняется в момент перехода в данное состояние.
Обозначается с помощью ключевого слова - метки действия entry, которое указывает на то, что следующее за ней выражение действия должно быть выполнено в момент входа в данное состояние.
Действие выхода (exit action) - действие, производимое при выходе из данного состояния.
Обозначается с помощью ключевого слова - метки действия exit, которое указывает на то, что следующее за ней выражение действия должно быть выполнено в момент выхода из данного состояния.
Внутренняя деятельность (do activity) - выполнение объектом операций или процедур, которые требуют определенного времени.
Обозначается с помощью ключевого слова - метки деятельности do, которое специфицирует так называемую "ду-деятельность", выполняемую в течение всего времени, пока объект находится в данном состоянии, или до тех пор, пока не будет прервано внешним событием. При нормальном завершении внутренней деятельности генерируется соответствующее событие.
Во всех остальных случаях метка действия идентифицирует событие, которое запускает соответствующее выражение действия. Эти события называются внутренними переходами. Семантически они эквивалентны переходам в само это состояние, за исключением той особенности, что выход из этого состояния или повторный вход в него не происходит. Это означает, что действия входа и выхода не производятся. При этом выполнение внутренних действий в состоянии не может быть прервано никакими внешними событиями, в отличие от внутренней деятельности, выполнение которой требует определенного времени.
В качестве примера состояния можно рассмотреть аутентификацию клиента для доступа к ресурсам моделируемой информационной системы (рис. 9.2). Список внутренних действий в данном состоянии может включать следующие действия. Первое действие - входное, которое выполняется при входе в это состояние и связано с получением строки символов, соответствующих паролю клиента. Далее выполняется деятельность по проверке введенного клиентом пароля. При успешном завершении этой проверки выполняется действие на выходе, которое отображает меню доступных для клиента опций.

Рис. 9.2. Пример состояния с непустой секцией внутренних действий
Кроме обычных состояний на диаграмме состояний могут размещаться псевдосостояния.
Псевдосостояние (pseudo-state) - вершина в конечном автомате, которая имеет форму состояния, но не обладает поведением.
Примерами псевдосостояний, которые определены в языке UML, являются начальное и конечное состояния.
Начальное состояние (start state) - разновидность псевдосостояния, обозначающее начало выполнения процесса изменения состояний конечного автомата или нахождения моделируемого объекта в составном состоянии.
В этом состоянии находится объект по умолчанию в начальный момент времени. Оно служит для указания на диаграмме состояний графической области, от которой начинается процесс изменения состояний. Графически начальное состояние в языке UML обозначается в виде закрашенного кружка (рис. 9.3, а), из которого может только выходить стрелка-переход.

Рис. 9.3. Графическое изображение начального и конечного состояний на диаграмме состояний
На самом верхнем уровне представления объекта переход из начального состояния может быть помечен событием создания (инициализации) данного объекта. В противном случае этот переход никак не помечается. Если этот переход не помечен, то он является первым переходом на диаграмме состояний в следующее за ним состояние. Каждая диаграмма или под-диаграмма состояний должна иметь единственное начальное состояние.
Конечное состояние (final state) - разновидность псевдосостояния, обозначающее прекращение процесса изменения состояний конечного автомата или нахождения моделируемого объекта в составном состоянии.
В этом состоянии должен находиться моделируемый объект или система по умолчанию после завершения работы конечного автомата. Оно служит для указания на диаграмме состояний графической области, в которой завершается процесс изменения состояний или жизненный цикл данного объекта. Графически конечное состояние в языке UML обозначается в виде закрашенного кружка, помещенного в окружность (рис. 9.3, б), в которую может только входить стрелка-переход.Каждая диаграмма состояний или подсостояний может иметь несколько конечных состояний, при этом все они считаются эквивалентными на одном уровне вложенности состояний.
Исторические состояния
Обычный конечный автомат не позволяет учитывать предысторию в процессе моделирования поведения систем и объектов. Однако функционирование ряда систем основано на возможности выхода из отдельного состояния-композита с последующим возвращением в это же состояние. Может оказаться необходимым учесть ту часть деятельности, которая была выполнена на момент выхода из этого состояния-композита, чтобы не начинать ее выполнение сначала. Для этой цели в языке UML существует историческое состояние.Историческое состояние (history state) - псевдосостояние, используемое для запоминания того из последовательных подсостояний, которое было текущим в момент выхода из составного состояния.
Историческое состояние применяется только в контексте составного состояния. При этом существует две разновидности исторического состояния: неглубокое или недавнее и глубокое или давнее (рис. 10.5).

Рис. 10.5. Графическое изображение недавнего (а) и давнего (б) исторического состояния
Неглубокое историческое состояние (shallow history state) обозначается в форме небольшой окружности, в которую помещена латинская буква "H" (рис. 10.5, а). Это состояние обладает следующей семантикой. Во-первых, оно является первым подсостоянием в составном состоянии, и переход извне в рассматриваемое составное состояние должен вести непосредственно в данное историческое состояние. Во-вторых, при первом попадании в неглубокое историческое состояние оно не хранит никакой истории. Другими словами, при первом переходе в недавнее историческое состояние оно заменяет собой начальное состояние соответствующего конечного подавтомата.
Далее могут последовательно изменяться вложенные подсостояния. Если в некоторый момент происходит выход из составного состояния (например, в случае наступления некоторого события), то рассматриваемое историческое состояние запоминает то из подсостояний, которое было текущим на момент выхода из данного составного состояния. При последующем входе в это составное состояние неглубокое историческое подсостояние имеет непустую историю и сразу отправляет конечный подавтомат в запомненное подсостояние, минуя все предшествующие ему подсостояния.
Историческое состояние теряет свою историю в тот момент, когда конечный подавтомат доходит до своего конечного состояния. При этом неглубокое историческое состояние запоминает историю только того конечного подавтомата, к которому оно относится. Другими словами, этот тип псевдосостояния способен запомнить историю только одного с ним уровня вложенности.
Если запомненное подсостояние также является составным состоянием, а при выходе из исходного составного состояния необходимо запомнить подсостояние второго уровня вложенности, то в этом случае следует воспользоваться более сильным псевдосостоянием - глубоким историческим состоянием.
Глубокое историческое состояние (deep history state или состояние глубокой истории) также обозначается в форме небольшой окружности, в которую помещена латинская буква "H" с дополнительным символом "*" (рис. 10.5, б), и служит для запоминания всех подсостояний любого уровня вложенности для исходного составного состояния.
Рекомендации по построению диаграмм состояний
По своему назначению диаграмма состояний не является обязательным представлением в модели и как бы "присоединяется" к тому элементу, который, по замыслу разработчиков, имеет нетривиальное поведение в течение своего жизненного цикла. Наличие у системы нескольких состояний, отличающихся от простой дихотомии "исправен - неисправен", "активен - неактивен", "ожидание - реакция на внешние действия", уже служит признаком необходимости построения диаграммы состояний. В качестве начального варианта диаграммы состояний, если нет очевидных соображений по поводу состояний объекта, можно воспользоваться подобными состояниями, в качестве составных, уточняя их (детализируя их внутреннюю структуру) по мере рассмотрения логики поведения моделируемой системы или объекта.При выделении состояний и переходов следует помнить, что длительность срабатывания отдельных переходов должна быть существенно меньшей, чем нахождение моделируемых элементов в соответствующих состояниях. Каждое из состояний должно характеризоваться определенной устойчивостью во времени. Другими словами, из каждого состояния на диаграмме не может быть самопроизвольного перехода в какое бы то ни было другое состояние. Все переходы должны быть явно специфицированы, в противном случае построенная диаграмма состояний является либо неполной (неадекватной), либо ошибочной с точки зрения нотации языка UML (ill formed).
При разработке диаграммы состояний нужно постоянно следить, чтобы объект в каждый момент мог находиться только в единственном состоянии. Если это не так, то данное обстоятельство может быть как следствием ошибки, так и неявным признаком наличия параллельности поведения у моделируемого объекта. В последнем случае следует явно специфицировать необходимое число конечных подавтоматов, вложив их в то составное состояние, которое характеризуется нарушением условия одновременности.
Следует произвести обязательную проверку, чтобы никакие два перехода из одного состояния не могли сработать одновременно.
Другими словами, необходимо выполнить требование отсутствия конфликтов у всех переходов, выходящих из одного и того же состояния. Наличие такого конфликта может служить признаком ошибки, либо параллельности или ветвления рассматриваемого процесса. Если параллельность по замыслу разработчика отсутствует, то следует ввести дополнительные сторожевые условия либо изменить существующие, чтобы исключить конфликт переходов. При наличии параллельности следует заменить конфликтующие переходы одним параллельным переходом типа ветвления.
Использование исторических состояний оправдано в том случае, когда необходимо организовать обработку исключительных ситуаций (прерываний) без потери данных или выполненной работы. При этом применять исторические состояния, особенно глубокие, необходимо с известной долей осторожности. Нужно помнить, что каждый из конечных подавтоматов может иметь только одно историческое состояние. В противном случае возможны ошибки, особенно, когда подавтоматы изображаются на отдельных диаграммах состояний.
Сложные переходы и псевдосостояния
Рассмотренное выше понятие перехода вполне достаточно для большинства типичных расчетно-аналитических задач. Однако современные программные системы могут реализовывать сложную логику поведения отдельных своих компонентов. Иногда для адекватного представления процесса изменения состояний семантика обычного перехода для них недостаточна. С этой целью в языке UML специфицированы дополнительные обозначения и свойства, которыми могут обладать отдельные переходы на диаграмме состояний.В отдельных случаях возникает необходимость явно показать ситуацию, когда переход может иметь несколько исходных состояний или целевых состояний. Такой переход получил название - параллельный переход. Введение в рассмотрение параллельных переходов может быть обусловлено необходимостью синхронизировать и/или разделить отдельные процессы управления на параллельные нити без спецификации дополнительной синхронизации в параллельных конечных подавтоматах.
Графически такой переход изображается вертикальной черточкой, аналогично обозначению перехода в известном формализме сетей Петри. Если параллельный переход имеет две или более исходящих из него дуг (рис. 10.6, а), то его называют разделением (fork). Если же он имеет две или более входящие дуги (рис. 10.6, б), то его называют слиянием (join). Текстовая строка спецификации параллельного перехода записывается рядом с черточкой и относится ко всем входящим или исходящим дугам.

Рис. 10.6. Графическое изображение перехода-разделения в параллельные подсостояния (а) и перехода-слияния из параллельных подсостояний (б)
Срабатывание параллельного перехода происходит следующим образом. В первом случае происходит разделение составного конечного автомата на два конечных подавтомата, образующих параллельные ветви вложенных подпроцессов. При этом после срабатывания перехода-разделения моделируемая система или объект одновременно будет находиться во всех целевых подсостояниях этого параллельного перехода (подсостояния 1 и 2).
Далее процесс изменения состояний будет протекать согласно ранее рассмотренным правилам для составных состояний.
Во втором случае переход-слияние срабатывает, если имеет место событие-триггер для всех исходных состояний этого перехода, и выполнено (при его наличии) сторожевое условие. При срабатывании перехода-слияния одновременно покидаются все исходные подсостояния перехода (подсостояния 3 и 4) и происходит переход в целевое состояние. При этом каждое из исходных подсостояний перехода должно принадлежать отдельному конечному подавтомату, входящему в составной конечный автомат (процессу Б).
Переход, стрелка которого соединена с границей составного состояния, обозначает переход в это составное состояние (переход a на рис. 10.7). Он эквивалентен переходу в начальное состояние каждого из конечных подавтоматов (единственному на рис. 10.7), входящих в состав данного состояния-композита. Переход f, выходящий из составного состояния (рис. 10.7), относится к каждому из вложенных состояний. Это означает, что моделируемая система или объект при наступления события f может покинуть данное составное состояние, находясь в любом из его вложенных состояний В и Г.

Рис. 10.7. Различные варианты переходов в составное состояние и из составного состояния
Иногда желательно реализовать ситуацию, когда выход из отдельного вложенного состояния соответствовал бы также выходу из составного состояния. В этом случае изображают переход, который непосредственно выходит из вложенного состояния и пересекает границу состояния-композита (переход c на рис. 10.7). Аналогично, допускается изображение переходов, входящих извне состояния-композита в отдельное вложенное состояние (переход b на рис. 10.7).
Переход d является внутренним для рассматриваемого состояния-композита и никак не влияет на выход из состояния-композита. Выход из данного составного состояния также возможен при наступлении события e, которое приводит в его конечное состояние, а из него - в состояние Е, находящееся вне данного состояния-композита.
В общем случае поведение параллельных конечных подавтоматов происходит независимо друг от друга, что позволяет, например, моделировать многозадачность в программных системах. Однако в отдельных ситуациях может возникнуть необходимость учесть в модели синхронизацию наступления отдельных событий и срабатывание соответствующих переходов. Для этой цели в языке UML имеется псевдосостояние, которое называется синхронизирующим состоянием или состоянием синхронизации.
Состояние синхронизации (synch state) - псевдосостояние в конечном автомате, которое используется для синхронизации параллельных областей конечного автомата.
Синхронизирующее состояние обозначается небольшой окружностью, внутри которой помещен символ звездочки "*". Оно используется совместно с переходом-слиянием или переходом-разделением для того, чтобы явно указать события в других конечных подавтоматах, оказывающие непосредственное влияние на поведение данного подавтомата.
Так, например, при включении компьютера с некоторой сетевой операционной системой параллельно начинается выполнение нескольких процессов. В частности, происходит проверка пароля пользователя и запуск различных служб. При этом работа пользователя на компьютере станет возможной только в случае успешной его аутентификации, в противном случае компьютер может быть выключен. Рассмотренные особенности синхронизации этих параллельных процессов учтены на соответствующей диаграмме состояний с помощью синхронизирующего состояния (рис. 10.8).

Рис. 10.8. Диаграмма состояний для примера включения компьютера
Составное состояние и подсостояние
Моделирование сложных объектов и систем, как правило, связано с многоуровневым представлением их состояний. В этом случае возникает необходимость детализировать отдельные состояния, сделав их составными.Составное состояние (composite state) - сложное состояние, которое состоит из других вложенных в него состояний.
Составное состояние называют также состоянием-композитом. Вложенные состояния выступают по отношению к составному состоянию как подсостояния (substate). И хотя между ними имеет место отношение композиции, графически все вершины диаграммы, которые соответствуют вложенным состояниям, изображаются внутри символа составного состояния (рис. 10.1). В этом случае размеры графического символа составного состояния увеличиваются, так чтобы вместить в себя все подсостояния.

Рис. 10.1. Графическое представление составного состояния с двумя вложенными в него последовательными подсостояниями
Составное состояние может содержать или несколько последовательных подсостояний, или несколько параллельных конечных подавтоматов. Каждое состояние-композит может уточняться только одним из указанных способов. При этом любое из подсостояний, в свою очередь, может быть состоянием-композитом и содержать внутри себя другие вложенные подсостояния. Количество уровней вложенности составных состояний в языке UML не фиксировано.
Последовательные подсостояния (sequential substates) - вложенные состояния состояния-композита, в рамках которого в каждый момент времени объект может находиться в одном и только одном подсостоянии.
Поведение объекта в этом случае представляет собой последовательную смену подсостояний, от начального до конечного . Моделируемый объект или система продолжает находиться в составном состоянии, тем не менее, введение в рассмотрение последовательных подсостояний позволяет учесть более тонкие логические аспекты его внутреннего поведения.
В качестве примера моделируемой системы стоит рассмотреть обычный телефонный аппарат.
Он может находиться в различных состояниях, в частности в состоянии дозвона до абонента. Очевидно, для того чтобы позвонить, необходимо снять телефонную трубку, услышать тоновый сигнал, после чего набрать нужный телефонный номер. Таким образом, состояние дозвона до абонента является составным и состоит из двух последовательных подсостояний: Телефонная трубка поднята и Набор телефонного номера. Фрагмент диаграммы состояний для этого примера содержит одно состояние-композит, которое состоит из двух последовательных подсостояний (рис. 10.2).

Рис. 10.2. Пример составного состояния с двумя вложенными последовательными подсостояниями
Некоторых пояснений могут потребовать переходы. Два из них специфицируют событие-триггер, которое имеет имя: набор цифры(n) с параметром n. В качестве параметра, как нетрудно предположить, выступает отдельная цифра на диске телефонного аппарата. Переход из начального подсостояния не содержит никакой строки текста. Последний переход в конечное подсостояние также не имеет события-триггера, но имеет сторожевое условие, проверяющее полноту набранного номера абонента. Только в случае истинности этого условия телефонный аппарат может перейти в конечное состояние для состояния-композита Дозвон до абонента.
Каждое составное состояние должно содержать в качестве вложенных состояний начальное и конечное состояния. При этом начальное подсостояние является исходным, когда происходит переход объекта в данное составное состояние. Если составное состояние содержит внутри себя конечное состояние, то переход в это вложенное конечное состояние означает завершение нахождения объекта в данном составном состоянии. Важно помнить, что для последовательных подсостояний начальное и конечное состояния должны быть единственными в каждом составном состоянии.
Это можно объяснить следующим образом. Каждая совокупность вложенных последовательных подсостояний представляет собой конечный подавтомат того конечного автомата, которому принадлежит рассматриваемое составное состояние.
Поскольку каждый конечный автомат может иметь по определению единственное начальное и единственное конечное состояния, то для любого его конечного подавтомата это условие также должно выполняться.
Параллельные подсостояния (concurrent substates) - вложенные состояния, используемые для спецификации двух и более конечных подавтоматов, которые могут выполняться параллельно внутри составного состояния.
Каждый из конечных подавтоматов занимает некоторую графическую область внутри составного состояния, которая отделяется от остальных горизонтальной пунктирной линией. Если на диаграмме состояний имеется составное состояние с вложенными параллельными подсостояниями, то объект может одновременно находиться в каждом из этих подсостояний.
Отдельные параллельные подсостояния могут, в свою очередь, состоять из нескольких последовательных подсостояний (рис. 10.3). В этом случае по определению моделируемый объект может находиться только в одном из последовательных подсостояний каждого подавтомата. Таким образом, для фрагмента диаграммы состояний (рис. 10.3) допустимо одновременное нахождение объекта только в следующих подсостояниях: (А, В, Г), (Б, В, Г), (А, В, Д), (Б, В, Д).

Рис. 10.3. Графическое изображение состояния-композита с вложенными параллельными подсостояниями
Несовместимое подсостояние (disjoint substate) - подсостояние, в котором подсистема не может находиться одновременно с другими подсостояниями одного и того же составного состояния.
В этом контексте недопустимо нахождение объекта одновременно в несовместимых подсостояниях (А, Б, В) или (В, Г, Д).
Поскольку каждый регион вложенного состояния специфицирует некоторый конечный подавтомат, то для каждого из вложенных конечных подавтоматов могут быть определены собственные начальное и конечное состояния (рис. 10.3). При переходе в данное составное состояние каждый из конечных подавтоматов оказывается в своем начальном состоянии. Далее происходит параллельное выполнение каждого из этих конечных подавтоматов, причем выход из составного состояния будет возможен лишь в том случае, когда все конечные подавтоматы будут находиться в своих конечных состояниях.
Если какой- либо из конечных подавтоматов пришел в свое финальное состояние раньше других, то он должен ожидать, пока и другие подавтоматы не придут в свои финальные состояния.
В некоторых случаях бывает желательно скрыть внутреннюю структуру составного состояния. Например, отдельный конечный подавтомат, специфицирующий составное состояние, может быть настолько большим по масштабу, что его визуализация затруднит общее представление диаграммы состояний. В подобной ситуации допускается не раскрывать на исходной диаграмме состояний данное составное состояние, а указать в правом нижнем углу специальный символ-пиктограмму (рис. 10.4). В последующем диаграмма состояний для соответствующего конечного подавтомата может быть изображена отдельно от основной диаграммы с необходимыми комментариями.

Рис. 10.4. Составное состояние со скрытой внутренней структурой и специальной пиктограммой
Диаграмма деятельности и особенности ее построения
При моделировании поведения проектируемой или анализируемой программной системы возникает необходимость не только представить процесс изменения ее состояний, но и детализировать особенности алгоритмической и процедурной реализации выполняемых системой операций. Для этой цели, как правило, используются блок-схемы или структурные схемы алгоритмов. Каждая такая схема акцентирует внимание на последовательности выполнения определенных процедур или элементарных операций, которые в совокупности приводят к получению желаемого результата.С увеличением сложности системы строгое соблюдение определенной последовательности выполняемых действий приобретает большое значение. Попытка заварить кофе холодной водой может испортить порцию напитка. Нарушение последовательности операций при ремонте двигателя приводит к его поломке или выходу из строя. Еще более катастрофические последствия могут произойти в случае отклонения от установленной последовательности действий при взлете или посадке авиалайнера, запуске ракеты, регламентных работах на АЭС.
Для моделирования процесса выполнения операций в языке UML используются диаграммы деятельности. Применяемая в них графическая нотация во многом похожа на нотацию диаграммы состояний, поскольку на диаграммах деятельности также присутствуют обозначения состояний и переходов. Отличие заключается в семантике состояний, которые используются для представления деятельности и действий, а также в отсутствии на переходах сигнатуры событий. Каждое состояние на диаграмме деятельности соответствует выполнению некой операции, а переход в следующее состояние происходит только после завершения выполнения этой операции. Диаграмма деятельности представляется в форме графа деятельности, вершинами которого являются состояния действия или деятельности, а дугами - переходы от одного состояния действия к другому.
Диаграммы деятельности - частный случай диаграмм состояний. Они позволяют реализовать в языке UML особенности процедурного и синхронного управления, обусловленного завершением внутренних действий и деятельности.
Основным направлением использования диаграмм деятельности является визуализация особенностей реализации операций классов, когда необходимо представить алгоритмы их выполнения. При этом каждое состояние может являться выполнением операции определенного класса либо ее части, позволяя использовать диаграммы деятельности для описания реакций на внутренние события системы.
В контексте языка UML деятельность представляет собой совокупность отдельных вычислений, выполняемых автоматом. При этом отдельные элементарные вычисления могут приводить к результату или действию. На диаграмме деятельности отображается логика или последовательность перехода от одной деятельности к другой, при этом внимание фиксируется на результате деятельности. Сам же результат может привести к изменению состояния системы или возвращению некоторого значения. Диаграмма деятельности предназначена для моделирования поведения систем, хотя время в явном виде отсутствует на этой диаграмме. Ситуация здесь во многом аналогична диаграмме состояний, однако имеет ряд особенностей.
Основным направлением использования диаграмм деятельности является визуализация особенностей реализации операций классов, когда необходимо представить алгоритмы их выполнения. При этом каждое состояние может являться выполнением операции определенного класса либо ее части, позволяя использовать диаграммы деятельности для описания реакций на внутренние события системы.
В контексте языка UML деятельность представляет собой совокупность отдельных вычислений, выполняемых автоматом. При этом отдельные элементарные вычисления могут приводить к результату или действию. На диаграмме деятельности отображается логика или последовательность перехода от одной деятельности к другой, при этом внимание фиксируется на результате деятельности. Сам же результат может привести к изменению состояния системы или возвращению некоторого значения. Диаграмма деятельности предназначена для моделирования поведения систем, хотя время в явном виде отсутствует на этой диаграмме. Ситуация здесь во многом аналогична диаграмме состояний, однако имеет ряд особенностей.
Дорожки
Диаграммы деятельности могут быть использованы не только для спецификации алгоритмов вычислений или потоков управления в программных системах. Не менее важная область их применения связана с моделированием бизнес-процессов. В этом контексте деятельность любой компании или фирмы представляет собой не что иное, как совокупность отдельных действий, работ, операций, направленных на достижение требуемого результата.Однако применительно к бизнес-процессам желательно выполнение каждого действия ассоциировать с конкретным подразделением компании. В этом случае подразделение будет нести ответственность за реализацию определенных действий, а сам бизнес-процесс представляется в виде переходов действий из одного подразделения к другому. Для моделирования этих особенностей в языке UML предложена специальная конструкция, получившее название дорожки.
Дорожка (swimlane) - графическая область диаграммы деятельности, содержащая элементы модели, ответственность за выполнение которых принадлежит отдельным подсистемам.
В данном случае имеется в виду визуальная аналогия с плавательными дорожками в бассейне, если смотреть на соответствующую диаграмму деятельности сверху. При этом все состояния на диаграмме деятельности делятся на группы, разграниченные вертикальными линиями. Две соседних линии и образуют дорожку, а группа состояний между этими линиями выполняется организационным подразделением (отделом, группой, отделением, филиалом) или сотрудником компании (рис. 11.6). В последнем случае принято указывать должность сотрудника, ответственного за выполнение определенных действий.
Названия подразделений или должностей явно указываются в верхней части дорожки. Пересекать линию дорожки могут только переходы, которые в этом случае обозначают выход или вход потока управления в соответствующее подразделение компании. Порядок следования дорожек не несет какой-либо семантической информации и определяется соображениями удобства.

Рис. 11.6. Вариант диаграммы деятельности с дорожками
В качестве примера можно рассмотреть фрагмент диаграммы деятельности торговой компании, обслуживающей клиентов в форме заказов. Подразделениями компании обычно являются отдел приема и оформления заказов, отдел продаж и склад. Этим подразделениям будут соответствовать три дорожки на диаграмме деятельности, каждая из которых специфицирует зону ответственности подразделения. В этом случае диаграмма деятельности заключает в себе не только информацию о последовательности выполнения рабочих действий, но и о том, какое подразделение торговой компании должно выполнять то или иное действие (рис. 11.7).

Рис. 11.7. Фрагмент диаграммы деятельности для торговой компании
Из указанной диаграммы деятельности видно, что после принятия заказа от клиента отделом приема и оформления заказов осуществляется распараллеливание деятельности на два потока (переход-разделение). Первый из них остается в этом же отделе и связан с получением оплаты от клиента за заказанный товар. Второй инициирует выполнение действия по регистрации заказа в отделе продаж (модель товара, размеры, цвет, год выпуска и пр.). Однако выдача товара со склада начинается только после того, как будет получена от клиента оплата за товар (переход-слияние). Затем выполняется подготовка товара к отправке и его отправка клиенту в отделе продаж. После завершения этих деятельностей заказ закрывается в отделе приема и оформления заказов.
Объекты на диаграмме деятельности
Действия на диаграмме деятельности могут производиться над теми или иными объектами. Эти объекты либо инициируют выполнение действий, либо определяют результат этих действий. При этом действия специфицируют вызовы, которые передаются от одного объекта графа деятельности другому. Поскольку в таком ракурсе объекты играют определенную роль в понимании процесса деятельности, иногда возникает необходимость явно указать их на диаграмме деятельности.Следует напомнить, что базовым графическим представлением объекта в нотации языка UML является прямоугольник класса, с тем отличием, что имя объекта подчеркивается. На диаграммах деятельности после имени может указываться характеристика состояния объекта в прямых скобках. Такие прямоугольники объектов присоединяются к состояниям действия отношением зависимости пунктирной линией со стрелкой. Соответствующая зависимость определяет состояние конкретного объекта после выполнения предшествующего действия.
На диаграмме деятельности с дорожками расположение объекта может иметь дополнительный смысл. А именно, если объект расположен на границе двух дорожек, то это может означать, что переход к следующему состоянию действия в соседней дорожке ассоциирован с нахождением документа в некотором состоянии. Если же объект расположен внутри дорожки, то и состояние этого объекта целиком определяется действиями данной дорожки.
Применительно к диаграммам деятельности объекты, как правило, являются экземплярами классов сущностей или бизнес - сущностей. Стоит также заметить, что на диаграмме деятельности один и тот же объект может быть изображен несколько раз, при этом для исключения несогласованности диаграммы необходимо указывать для них различные характеристики состояния.
В предыдущем примере с торговой компанией центральным объектом процесса продажи является заказ или вернее состояние его выполнения. Вначале до обращения клиента заказ как объект отсутствует и возникает лишь после контакта с клиентом. В результате фиксируется полученный заказ, после чего он регистрируется в отделе продаж.
Затем он передается на склад, где после получения оплаты за товар оформляется окончательно . Наконец, после того, как товар отправлен клиенту, эта информация вносится в заказ, и он считается выполненным. Эта информация может быть представлена графически в виде модифицированного варианта диаграммы деятельности торговой компании (рис. 11.8).
Достоинством диаграммы деятельности является возможность визуализировать отдельные аспекты поведения рассматриваемой системы или реализации отдельных операций классов в виде процедурной последовательности действий. Таким образом, полная модель системы может содержать одну или несколько диаграмм деятельности, каждая из которых описывает последовательность реализации либо наиболее важных вариантов использования (типичный ход событий и все исключения), либо нетривиальных операций классов.

Рис. 11.8. Фрагмент диаграммы деятельности торговой компании с объектом-заказом
В заключение следует заметить, что диаграмма деятельности, так же как и другие виды канонических диаграмм, не содержат средств выбора оптимальных вариантов конфигурации собственно диаграмм. При разработке сложных проектов проблема выбора оптимальных решений применительно к диаграммам деятельности становится весьма актуальной. Рациональное расходование средств, затраченных на разработку и эксплуатацию системы, повышение ее производительности и надежности зачастую определяют конечный результат всего проекта.
Переходы на диаграмме деятельности
Переход как элемент диаграммы состояний был рассмотрен в лекции 9. При построении диаграммы деятельности используются только нетриггерные переходы, т. е. такие, которые происходят сразу после завершения деятельности или выполнения соответствующего действия. Такой переход передает управление в последующее состояние сразу, как только закончится действие или деятельность в предыдущем состоянии. На диаграмме такой переход изображается сплошной линией со стрелкой.Если из состояния действия выходит единственный переход, то его можно никак не помечать. Если же таких переходов несколько, то при моделировании последовательной деятельности запускается только один из них. В этом случае для каждого из таких переходов должно быть явно записано собственное сторожевое условие в прямых скобках (см. лекцию 9). При этом для всех выходящих из некоторого состояния деятельности переходов должно выполняться требование истинности только одного из них. Подобный случай встречается тогда, когда последовательно выполняемая деятельность должна разделиться на альтернативные ветви в зависимости от значения промежуточного результата. Такая ситуация получила название ветвления, а для ее обозначения применяется специальный символ решения.
Графически ветвление на диаграмме деятельности обозначается символом решения (decision), изображаемого в форме небольшого ромба, внутри которого нет никакого текста (рис. 11.3 вверху). В этот ромб может входить только одна стрелка от того состояния действия, после выполнения которого поток управления должен быть продолжен по одной из взаимно исключающих ветвей. Принято входящую стрелку присоединять к верхней или левой вершине символа решения. Выходящих стрелок может быть две или более, но для каждой из них явно указывается соответствующее сторожевое условие в форме булевского выражения.
Для графического объединения альтернативных ветвей на диаграмме деятельности рекомендуется также использовать аналогичный символ в форме ромба, который в этом случае называют соединением (merge).
Наличие этого символа, внутри которого также не записывается никакого текста, упрощает визуальный контроль логики выполнения процедурных действий на диаграмме деятельности (рис. 11.3 внизу). Входящих стрелок у символа соединения может быть несколько, они исходят от состояний действия, принадлежащих к одной из взаимно исключающих ветвей. Выходить из ромба соединения может только одна стрелка, при этом ни входящие, ни выходящая стрелки не должны содержать сторожевых условий. Исключением является ситуация, когда с целью сокращения диаграммы объединяют символ решения с символом соединения. Нарушение этих правил делает диаграмму деятельности несостоятельной (ill formed).
Диаграмма деятельности (рис. 11.3) моделирует ситуацию, возникающую в супермаркетах при оплате товаров. Как правило, заплатить за покупки можно либо наличными, либо по кредитной карточке. Если покупателем выбран вариант оплаты по кредитной карточке, то проверяется сумма баланса предъявленной к оплате кредитной карточки. При этом оплата происходит только в том случае, если общая стоимость приобретаемых товаров не превышает суммы баланса этой карточки. В противном случае оплаты не происходит, и товар остается у продавца.

Рис. 11.3. Различные варианты ветвлений на диаграмме деятельности
Один из наиболее значимых недостатков обычных блок-схем или структурных схем алгоритмов связан с проблемой изображения параллельных ветвей отдельных вычислений. Поскольку распараллеливание вычислений существенно повышает общее быстродействие программных систем, необходимы графические примитивы для представления параллельных процессов. В диаграммах деятельности с этой целью используется специальный символ для разделения и слияния параллельных вычислений или потоков управления. Это прямая черточка, аналогичная обозначению параллельных переходов для диаграмм состояний.
На диаграммах деятельности такая черточка изображается отрезком горизонтальной, реже - вертикальной, линии, толщина которой несколько шире линий простых переходов диаграммы деятельности.
При этом разделение (fork) имеет один входящий переход и несколько выходящих (рис. 11.4, а), которые изображаются отрезками вертикальных, реже - горизонтальных, линий. Слияние (join), наоборот, имеет несколько входящих переходов и один выходящий (рис. 11.4, б). Параллельные переходы на диаграмме деятельности можно изображать в удлиненной форме, а входящие и выходящие переходы вертикальными стрелками.

Рис. 11.4. Графическое изображение разделения и слияния параллельных потоков управления на диаграмме деятельности
Рассмотренных переходов оказывается достаточно для моделирования различных по сложности ситуаций. Для иллюстрации особенности изображения ветвления и параллельных деятельностей можно рассмотреть пример регистрации пассажиров в аэропорту (рис. 11.5). Первоначально выполняется деятельность по проверке билета. В случае если билет не действителен, он возвращается пассажиру, при этом никаких дополнительных действий не выполняется.

Рис. 11.5. Диаграмма деятельности для примера регистрации пассажиров в аэропорту
Если же билет действителен, то пассажиру выдается посадочный талон. В дополнение к этому проверяется гражданство и наличие багажа у пассажира. Если есть багаж, то его проверка может быть выполнена параллельно, по результатам которой пассажиру выдается талон на багаж. Если пассажир является иностранным гражданином, то дополнительно проверяется наличие у него визы. Если виза действительна, то проверка завершается успешно, и пассажир с возвращенным ему билетом может проследовать на посадку.
Если же виза окажется не действительной, то для этого пассажира посадка на данный рейс оказывается невозможной. В этом случае ему не выдается посадочный талон и талон на багаж, в случае его наличия, поскольку происходит прекращение всех выполняемых сотрудниками аэропорта действий.
Состояния деятельности и действия
Состояние деятельности (activity state) - состояние в графе деятельности, которое служит для представления процедурной последовательности действий, требующих определенного времени.Переход из состояния деятельности происходит после выполнения специфицированной в нем ду-деятельности, при этом ключевое слово do в имени деятельности не указывается. Состояние деятельности не может иметь внутренних переходов, поскольку оно является элементарным. Деятельность, описанная в состоянии деятельности, не может быть прервана никакими внешними событиями. Обычное использование состояния деятельности заключается в моделировании подпроцесса выполнения отдельных алгоритмов или процедур.
Состояние действия (action state) - специальный случай состояния с некоторым входным действием и, по крайней мере, одним выходящим из состояния переходом.
Переход из состояния действия происходит после завершения входного действия. Состояние действия не может иметь внутренних переходов, поскольку оно является элементарным. Обычное использование состояния действия заключается в моделировании шага выполнения алгоритма или процедуры в рамках одного потока управления.
Графически состояния деятельности и действия изображаются одинаковой фигурой, напоминающей прямоугольник, боковые стороны которого заменены выпуклыми дугами (рис. 11.1). Внутри этой фигуры записывается имя состояния деятельности (рис. 11.1, а) или действия (рис. 11.1, б) в форме выражения (expression), которое должно быть уникальным в пределах одной диаграммы деятельности.

Рис. 11.1. Графическое изображение состояний деятельности и действия
Действие может быть записано на естественном языке, псевдокоде или языке программирования. Никаких дополнительных или неявных ограничений при записи действий не накладывается. Рекомендуется в качестве имени простого действия использовать глагол с пояснительными словами (рис. 11.1, а). Если же действие может быть представлено в формальном виде, то целесообразно записать его на том языке программирования, на котором предполагается реализовывать разрабатываемый проект (рис. 11.1, б).
Иногда возникает необходимость представить на диаграмме деятельности сложное действие, в свою очередь, состоящее из нескольких более простых. В этом случае можно использовать специальное обозначение так называемого состояния под-деятельности.
Состояние под-деятельности (subactivity state) - состояние в графе деятельности, которое служит для представления неатомарной последовательности шагов процесса.
Это состояние является графом деятельности и обозначается специальной пиктограммой в правом нижнем углу символа состояния действия (рис. 11.2). Данная конструкция может применяться к любому элементу языка UML, который поддерживает "вложенность" своей структуры. При этом пиктограмма может быть дополнительно помечена типом вложенной структуры.

Рис. 11.2. Графическое изображение состояния под-деятельности
Каждая диаграмма деятельности должна иметь единственное начальное и конечное состояния. Они имеют такие же обозначения, как и на диаграмме состояний. При этом каждая деятельность начинается в начальном состоянии и заканчивается в конечном состоянии. Саму диаграмму деятельности принято располагать таким образом, чтобы действия следовали сверху вниз или слева направо. В этом случае начальное состояние будет изображаться в верхней или левой части диаграммы, а конечное - в ее нижней или правой части. В интересах удобства визуального представления на диаграмме деятельности допускается изображать несколько конечных состояний. В этом случае все их принято считать эквивалентными друг другу.
Диаграмма компонентов и особенности ее построения
Все рассмотренные ранее диаграммы отражали концептуальные и логические аспекты построения модели системы. Особенность логического представления заключается в том, что оно оперирует понятиями, которые не имеют материального воплощения. Другими словами, различные элементы логического представления, такие как классы, ассоциации, состояния, сообщения, не существуют материально или физически. Они лишь отражают понимание статической структуры той или иной системы или динамические аспекты ее поведения.Для создания конкретной физической системы необходимо реализовать все элементы логического представления в конкретные материальные сущности. Для описания таких реальных сущностей предназначен другой аспект модельного представления, а именно – физическое представление модели. В контексте языка UML это означает совокупность связанных физических сущностей, включая программное и аппаратное обеспечение, а также персонал, которые организованы для выполнения специальных задач.
Физическая система (physical system) — реально существующий прототип модели системы.
С тем чтобы пояснить отличие логического и физического представлений, необходимо в общих чертах рассмотреть процесс разработки программной системы. Ее исходным логическим представлением могут служить структурные схемы алгоритмов и процедур, описания интерфейсов и концептуальные схемы баз данных. Однако для реализации этой системы необходимо разработать исходный текст программы на языке программирования. При этом уже в тексте программы предполагается организация программного кода, определяемая синтаксисом языка программирования и предполагающая разбиение исходного кода на отдельные модули.
Однако исходные тексты программы еще не являются окончательной реализацией проекта, хотя и служат фрагментом его физического представления. Программная система может считаться реализованной в том случае, когда она будет способна выполнять функции своего целевого предназначения. А это возможно, только если программный код системы будет реализован в форме исполняемых модулей, библиотек классов и процедур, стандартных графических интерфейсов, файлов баз данных.
Именно эти компоненты являются базовыми элементами физического представления системы в нотации языка UML.
Полный проект программной системы представляет собой совокупность моделей логического и физического представлений, которые должны быть согласованы между собой. В языке UML для физического представления моделей систем используются так называемые диаграммы реализации, которые включают в себя две отдельные канонические диаграммы: диаграмму компонентов и диаграмму развертывания.
Диаграмма компонентов, в отличие от ранее рассмотренных диаграмм, описывает особенности физического представления системы. Диаграмма компонентов позволяет определить архитектуру разрабатываемой системы, установив зависимости между программными компонентами, в роли которых может выступать исходный, бинарный и исполняемый код. Во многих средах разработки модуль или компонент соответствует файлу. Пунктирные стрелки, соединяющие модули, показывают отношения взаимозависимости, аналогичные тем, которые имеют место при компиляции исходных текстов программ. Основными графическими элементами диаграммы компонентов являются компоненты, интерфейсы и зависимости между ними.
В разработке диаграмм компонентов участвуют как системные аналитики и архитекторы, так и программисты. Диаграмма компонентов обеспечивает согласованный переход от логического представления к конкретной реализации проекта в форме программного кода. Одни компоненты могут существовать только на этапе компиляции программного кода, другие – на этапе его исполнения. Диаграмма компонентов отражает общие зависимости между компонентами, рассматривая последние в качестве отношений между ними.
Именно эти компоненты являются базовыми элементами физического представления системы в нотации языка UML.
Полный проект программной системы представляет собой совокупность моделей логического и физического представлений, которые должны быть согласованы между собой. В языке UML для физического представления моделей систем используются так называемые диаграммы реализации, которые включают в себя две отдельные канонические диаграммы: диаграмму компонентов и диаграмму развертывания.
Диаграмма компонентов, в отличие от ранее рассмотренных диаграмм, описывает особенности физического представления системы. Диаграмма компонентов позволяет определить архитектуру разрабатываемой системы, установив зависимости между программными компонентами, в роли которых может выступать исходный, бинарный и исполняемый код. Во многих средах разработки модуль или компонент соответствует файлу. Пунктирные стрелки, соединяющие модули, показывают отношения взаимозависимости, аналогичные тем, которые имеют место при компиляции исходных текстов программ. Основными графическими элементами диаграммы компонентов являются компоненты, интерфейсы и зависимости между ними.
В разработке диаграмм компонентов участвуют как системные аналитики и архитекторы, так и программисты. Диаграмма компонентов обеспечивает согласованный переход от логического представления к конкретной реализации проекта в форме программного кода. Одни компоненты могут существовать только на этапе компиляции программного кода, другие – на этапе его исполнения. Диаграмма компонентов отражает общие зависимости между компонентами, рассматривая последние в качестве отношений между ними.
Интерфейсы
Следующим графическим элементом диаграммы компонентов являются интерфейсы. В общем случае интерфейс графически изображается окружностью, которая соединяется с компонентом отрезком линии без стрелок (рис. 12.3, а). При этом имя интерфейса, которое рекомендуется начинать с заглавной буквы "I", записывается рядом с окружностью. Семантически линия означает реализацию интерфейса, а наличие интерфейсов у компонента означает, что данный компонент реализует соответствующий набор интерфейсов .
Рис. 12.3. Графическое изображение интерфейсов на диаграмме компонентов.
Кроме того, интерфейс на диаграмме компонентов может быть изображен в виде прямоугольника класса со стереотипом << interface>> и секцией поддерживаемых операций (рис. 12.3, б). Как правило, этот вариант обозначения используется для представления внутренней структуры интерфейса.
При разработке программных систем интерфейсы обеспечивают не только совместимость различных версий, но и возможность вносить существенные изменения в одни части программы, не изменяя другие . Характер применения интерфейсов отдельными компонентами может отличаться.
Различают два способа связи интерфейса и компонента. Если компонент реализует некоторый интерфейс, то такой интерфейс называют экспортируемым или поддерживаемым, поскольку этот компонент предоставляет его в качестве сервиса другим компонентам. Если же компонент использует некоторый интерфейс, который реализуется другим компонентом, то такой интерфейс для первого компонента называется импортируемым. Особенность импортируемого интерфейса состоит в том, что на диаграмме компонентов это отношение изображается с помощью зависимости.
Компоненты
Для представления физических сущностей в языке UML применяется специальный термин – компонент.Компонент (component) — физически существующая часть системы, которая обеспечивает реализацию классов и отношений, а также функционального поведения моделируемой программной системы.
Компонент предназначен для представления физической организации ассоциированных с ним элементов модели. Дополнительно компонент может иметь текстовый стереотип и помеченные значения, а некоторые компоненты – собственное графическое представление. Компонентом может быть исполняемый код отдельного модуля, командные файлы или файлы, содержащие интерпретируемые скрипты.
Компонент служит для общего обозначения элементов физического представления модели и может реализовывать некоторый набор интерфейсов. Для графического представления компонента используется специальный символ – прямоугольник со вставленными слева двумя более мелкими прямоугольниками (рис. 12.1). Внутри объемлющего прямоугольника записывается имя компонента и, возможно, дополнительная информация. Этот символ является базовым обозначением компонента в языке UML.

Рис. 12.1. Графическое изображение компонента
Графическое изображение компонента ведет свое происхождение от обозначения модуля программы, применявшегося некоторое время для отображения особенностей инкапсуляции данных и процедур.
Модуль (module) — часть программной системы, требующая памяти для своего хранения и процессора для исполнения.
В этом случае верхний маленький прямоугольник концептуально ассоциировался с данными, которые реализует этот компонент (иногда он изображается в форме овала). Нижний маленький прямоугольник ассоциировался с операциями или методами, реализуемыми компонентом. В простых случаях имена данных и методов записывались явно в маленьких прямоугольниках, однако в языке UML они не указываются.
Имя компонента подчиняется общим правилам именования элементов модели в языке UML и может состоять из любого числа букв, цифр и знаков препинания.
Отдельный компонент может быть представлен на уровне типа или экземпляра. И хотя его графическое изображение в обоих случаях одинаково, правила записи имени компонента несколько отличаются.
Если компонент представляется на уровне типа, то записывается только имя типа с заглавной буквы в форме: <Имя типа>. Если же компонент представляется на уровне экземпляра, то его имя записывается в форме: <имя компонента ‘:' Имя типа>. При этом вся строка имени подчеркивается. Так, в первом случае (рис. 12.1, а) для компонента уровня типов указывается имя типа, а во втором (рис. 12.1, б) для компонента уровня экземпляра – собственное имя компонента и имя типа.
Правила именования объектов в языке UML требуют подчеркивания имени отдельных экземпляров, но применительно к компонентам подчеркивание их имени часто опускают. В этом случае запись имени компонента со строчной буквы характеризует компонент уровня примеров.
В качестве собственных имен компонентов принято использовать имена исполняемых файлов, динамических библиотек, Web-страниц, текстовых файлов или файлов справки, файлов баз данных или файлов с исходными текстами программ, файлов скриптов и другие.
В отдельных случаях к простому имени компонента может быть добавлена информация об имени объемлющего пакета и о конкретной версии реализации данного компонента. Необходимо заметить, что в этом случае номер версии записывается как помеченное значение в фигурных скобках. В других случаях символ компонента может быть разделен на секции, чтобы явно указать имена реализованных в нем классов или интерфейсов. Такое обозначение компонента называется расширенным .
Поскольку компонент как элемент модели может иметь различную физическую реализацию, иногда его изображают в форме специального графического символа, иллюстрирующего конкретные особенности реализации. Строго говоря, эти дополнительные обозначения не специфицированы в нотации языка UML. Однако, удовлетворяя общим механизмам расширения языка UML, они упрощают понимание диаграммы компонентов, существенно повышая наглядность графического представления.
Для более наглядного изображения компонентов были предложены и стали общепринятыми следующие графические стереотипы:

Рис. 12.2. Варианты графического изображения компонентов на диаграмме компонентов.
Эти элементы иногда называют артефактами , подчеркивая при этом их законченное информационное содержание, зависящее от конкретной технологии реализации соответствующих компонентов. Более того, разработчики могут для этой цели использовать самостоятельные обозначения, поскольку в языке UML нет строгой нотации для графического представления артефактов.
Другой способ спецификации различных видов компонентов — указание текстового стереотипа компонента перед его именем. В языке UML для компонентов определены следующие стереотипы:
Соединения и зависимости на диаграмме развертывания
На диаграмме развертывания кроме изображения узлов указываются отношения между ними. В качестве отношений выступают физические соединения между узлами, а также зависимости между узлами и компонентами, которые допускается изображать на диаграммах развертывания.Соединения являются разновидностью ассоциации и изображаются отрезками линий без стрелок. Наличие такой линии указывает на необходимость организации физического канала для обмена информацией между соответствующими узлами. Характер соединения может быть дополнительно специфицирован примечанием, стереотипом, помеченным значением или ограничением. Так, на представленном ниже фрагменте диаграммы развертывания (рис. 13.5) явно определены рекомендации по технологии физической реализации соединений в форме примечания.

Рис. 13.5. Фрагмент диаграммы развертывания с соединениями между узлами
Кроме соединений на диаграмме развертывания могут присутствовать отношения зависимости между узлом и размещаемыми на нем компонентами. Подобный способ представляет собой альтернативу вложенному изображению компонентов внутри символа узла, что не всегда удобно, поскольку делает этот символ излишне объемным. При большом количестве развернутых на узле компонентов соответствующую информацию можно представить в форме отношения зависимости (рис. 13.6).

Рис. 13.6. Диаграмма развертывания с отношением зависимости между узлом и развернутыми на нем компонентами
Разработка информационных систем, обеспечивающих доступ в режиме реального времени, предполагает не только создание программного кода, но и использование дополнительных аппаратных средств. Вариант физического представления модели мобильного доступа к корпоративной базе данных показан на следующей диаграмме развертывания (рис. 13.7).

Рис. 13.7. Диаграмма развертывания для системы мобильного доступа к корпоративной базе данных
Данная диаграмма содержит общую информацию о развертывании рассматриваемой системы и может быть детализирована при разработке программных компонентов управления. Как видно из рисунка, в этой диаграмме развертывания использованы дополнительные стереотипы "приемопередатчик" и "мобильный телефон", которые отсутствуют в описании языка UML, а также специальные графические изображения (стереотипы) для отдельных аппаратных устройств.
Узел
Узел (node) представляет собой физически существующий элемент системы, который может обладать вычислительным ресурсом или являться техническим устройством.В качестве вычислительного ресурса узла может рассматриваться один или несколько процессоров, а также объем электронной или магнитооптической памяти. Однако в языке UML понятие узла включает в себя не только вычислительные устройства (процессоры), но и другие механические или электронные устройства, такие как датчики, принтеры, модемы, цифровые камеры, сканеры и манипуляторы.
Графически узел на диаграмме развертывания изображается в форме трехмерного куба. Узел имеет имя, которое указывается внутри этого графического символа. Сами узлы могут представляться как на уровне типа (рис. 13.1, а), так и на уровне экземпляра (рис. 13.1, б).

Рис. 13.1. Графическое изображение узла на диаграмме развертывания
В первом случае имя узла записывается в форме: <Имя типа узла> без подчеркивания и начинается с заглавной буквы. Во втором - имя узла-экземпляра записывается в виде: <имя узла ':' Имя типа узла>, а вся запись подчеркивается. Имя типа узла указывает на разновидность узлов, присутствующих в модели системы. Так, на представленном рисунке (рис. 13.1, а) узел с именем Видеокамера относится к общему типу и никак не конкретизируется. Второй узел (рис. 13.1, б) является узлом-экземпляром конкретной модели сканера.
Изображения узлов могут расширяться, чтобы включить дополнительную информацию о спецификации узла. Если дополнительная информация относится к имени узла, то она записывается под этим именем в форме помеченного значения (рис. 13.2).

Рис. 13.2. Графическое изображение узла-экземпляра с дополнительной информацией в форме помеченного значения
При необходимости явно указать компоненты, которые размещаются или выполняются на отдельном узле, это можно сделать двумя способами. Первый из них позволяет разделить графический символ узла на две секции горизонтальной линией.
В верхней секции записывают имя узла, а в нижней - размещенные на этом узле компоненты (рис. 13.3, а).
Второй способ разрешает показывать на диаграмме развертывания узлы с вложенными изображениями компонентов (рис. 13.3, б). Важно помнить, что в качестве таких вложенных компонентов могут выступать только исполняемые компоненты и динамические библиотеки.

Рис. 13.3. Варианты графического изображения узлов-экземпляров с размещаемыми на них компонентами
В качестве дополнения к имени узла могут использоваться различные текстовые стереотипы, которые явно специфицируют назначение этого узла. Для этой цели были предложены следующие текстовые стереотипы: "processor" (процессор), "sensor" (датчик), "modem" (модем), "net" (сеть), "printer" (принтер) и другие, смысл которых понятен из контекста.
На диаграммах развертывания допускаются специальные условные обозначения для различных физических устройств, графическое изображение которых проясняет назначение или выполняемые устройством функции. Однако пользоваться этой возможностью следует осторожно, памятуя о том, что основное достоинство языка UML следует из его названия - унификация графических элементов визуализации моделей.
Возможность включения персонала в понятие узла не рассматривается в нотации языка UML, тем не менее, подобное расширение понятие узла позволяет создавать средствами языка UML модели самых различных систем, включая бизнес-процессы и технические комплексы. Действительно, для реализации бизнес-процессов компаний удобно рассматривать в качестве узлов-ресурсов системы организационные подразделения, состоящие из персонала. Автоматизация управления техническими комплексами может потребовать рассмотрения в качестве самостоятельного элемента человека-оператора, способного принимать решения в нештатных ситуациях и нести ответственность за возможные последствия этих решений.
Наиболее известны два специальных графических стереотипа для обозначения разновидностей узлов.
Первый обозначает ресурсоемкий узел (processor), под которым понимается узел с процессором и памятью, необходимыми для выполнения исполняемых компонентов. Он изображается в форме куба с боковыми гранями, окрашенными в серый цвет (рис. 13.4, а). Второй стереотип в форме обычного куба обозначает устройство (device), под которым понимается узел без процессора и памяти (рис. 13.4, б). На этом типе узлов не могут размещаться исполняемые компоненты программной системы.

Рис. 13.4. Варианты изображения графических стереотипов узлов
Следует заметить, что кроме графического изображения ресурсоемких узлов и устройств соответствующие узлы можно изображать с помощью обычного символа узла (рис.13.1) и дополнительного стереотипа "processor" или "device".
Кроме известных текстовых и графических стереотипов для узлов диаграммы развертывания разработчики могут предложить дополнительные графические стереотипы, которые улучшают наглядность представления диаграмм развертывания. Например, рабочую станцию можно изобразить в виде ресурсоемкого узла, или в форме рисунка внешнего вида компьютера (рис. 13.4, в). Соответственно, сканер также может быть изображен в виде рисунка или фотографии данного устройства.
Паттерн Фасад и его обозначение в нотации языка UML
Паттерн Фасад предназначен для замены нескольких разнотипных интерфейсов доступа к определенной подсистеме некоторым унифицированным интерфейсом, что существенно упрощает использование рассматриваемой подсистемы. Общее представление паттерна проектирования Фасад может быть изображено с помощью следующей диаграммы параметризованной кооперации (рис. 14.2).
Рис. 14.2. Общее представление паттерна проектирования Фасад
Изображенная параметризованная кооперация содержит 4 параметра: класс Facade (Фасад), интерфейс IFacade, интерфейсы IConcreteClass и конкретные классы ConcreteClass, в которых реализованы интерфейсы IConcreteClass. Пунктирная линия со стрелкой в форме треугольника служит для обозначения отношения реализации (не путать с отношением обобщения классов).
При решении конкретных задач проектирования данный паттерн может быть конкретизирован. В этом случае вместо параметров изображенной кооперации должны быть указаны классы, предназначенные для решения отдельных задач.
Ниже приведен пример, который иллюстрирует использование паттерна Фасад для выполнения операций по заданию и считыванию адресов из базы данных сотрудников. Фрагмент соответствующей диаграммы классов содержит 2 класса: Адрес и интерфейс к операциям этого класса IАдрес (рис. 14.3). При задании адреса нового сотрудника необходимо обратиться к этому интерфейсу и последовательно выполнить операции: задатьУлицу(), задатьДом(), задатьКорпус(), задатьКвартиру(), используя в качестве аргумента идентификационный номер нового сотрудника. Для получения информации об адресе сотрудника, необходимо также обратиться к этому интерфейсу и последовательно выполнить операции: прочитатьУлицу(), прочитатьДом(), прочитатьКорпус(), прочитатьКвартиру(), используя в качестве аргумента идентификационный номер интересуемого сотрудника.

Рис. 14.3. Фрагмент диаграммы классов до применения паттерна Фасад
Очевидно, отслеживать при каждом обращении правильность выполнения этих последовательностей операций неудобно.
С этой целью к данному фрагменту следует добавить еще один интерфейс, реализацию паттерна Фасад для рассматриваемой ситуации. Соответствующий фрагмент модифицированной диаграммы классов будет содержать 4 класса (рис. 14.4), изображенные таким образом, чтобы иллюстрировать реализацию параметрической кооперации (рис. 14.2).

Рис. 14.4. Конкретная реализация паттерна проектирования Фасад
При задании адреса нового сотрудника в этом случае достаточно обратиться к интерфейсу IФасад и выполнить единственную операцию: задатьАдрес(), используя в качестве аргумента идентификационный номер нового сотрудника. Для получения информации об адресе сотрудника также достаточно обратиться к этому интерфейсу и выполнить единственную операцию: прочитатьАдрес(), используя в качестве аргумента идентификационный номер интересуемого сотрудника. Реализацию данных операций следует предусмотреть в классе Фасад. Взаимодействие объектов этих классов может быть представлено с помощью диаграммы последовательности (рис. 14.5).

Рис. 14.5. Диаграмма последовательности для выполнения операции задания адреса
Аналогичная диаграмма последовательности может быть построена для выполнения операции по чтению адреса. Использование паттерна Фасад обеспечивает для клиента не только простоту доступа к информации об адресах, но и независимость представления объектов класса Адрес от запросов клиентов. Это обстоятельство особенно актуально при изменении формата представления информации или смене соответствующей базы данных. В этом случае потребуется внести изменения только в реализацию операций класса Фасад.
С этой целью к данному фрагменту следует добавить еще один интерфейс, реализацию паттерна Фасад для рассматриваемой ситуации. Соответствующий фрагмент модифицированной диаграммы классов будет содержать 4 класса (рис. 14.4), изображенные таким образом, чтобы иллюстрировать реализацию параметрической кооперации (рис. 14.2).

Рис. 14.4. Конкретная реализация паттерна проектирования Фасад
При задании адреса нового сотрудника в этом случае достаточно обратиться к интерфейсу IФасад и выполнить единственную операцию: задатьАдрес(), используя в качестве аргумента идентификационный номер нового сотрудника. Для получения информации об адресе сотрудника также достаточно обратиться к этому интерфейсу и выполнить единственную операцию: прочитатьАдрес(), используя в качестве аргумента идентификационный номер интересуемого сотрудника. Реализацию данных операций следует предусмотреть в классе Фасад. Взаимодействие объектов этих классов может быть представлено с помощью диаграммы последовательности (рис. 14.5).

Рис. 14.5. Диаграмма последовательности для выполнения операции задания адреса
Аналогичная диаграмма последовательности может быть построена для выполнения операции по чтению адреса. Использование паттерна Фасад обеспечивает для клиента не только простоту доступа к информации об адресах, но и независимость представления объектов класса Адрес от запросов клиентов. Это обстоятельство особенно актуально при изменении формата представления информации или смене соответствующей базы данных. В этом случае потребуется внести изменения только в реализацию операций класса Фасад.
Паттерн Наблюдатель и его обозначение в нотации языка UML
Паттерн Наблюдатель предназначен для контроля изменений состояния объекта и передачи информации об изменении этого состояния множеству клиентов. В общем случае паттерн Наблюдатель также может быть изображен в виде параметризованной кооперации (рис. 14.6).
Рис. 14.6. Общее представление паттерна проектирования Наблюдатель
Изображенная параметризованная кооперация содержит 4 параметра: абстрактный класс Subject (Субъект), класс ConcreteSubject (Конкретный Субъект), абстрактный класс Observer (Наблюдатель) и класс ConcreteObserver (Конкретный Наблюдатель). Пунктирная линия со стрелкой в форме треугольника служит для обозначения отношения обобщения классов.
При решении конкретных задач проектирования данный паттерн также может быть конкретизирован. В этом случае вместо параметров изображенной кооперации должны быть указаны классы, предназначенные для решения отдельных задач.
Теперь можно рассмотреть пример, который иллюстрирует использование паттерна Наблюдатель для отслеживания изменений в таблице БД и отражении этих изменений на диаграммах. Для определенности можно использовать таблицу БД MS Access и две диаграммы - круговую и столбиковую. Фрагмент соответствующей диаграммы классов содержит 5 классов (рис. 14.7).

Рис. 14.7. Конкретная реализация паттерна проектирования Наблюдатель
В этом случае за субъектом Таблицей MS Access может "следить" произвольное число наблюдателей, причем их добавление или удаление не влияет на представление информации в БД. Класс Таблица MS Access реализует операции по отслеживанию изменений в соответствующей таблице, и при их наличии сразу информирует абстрактного наблюдателя. Тот в свою очередь вызывает операции по перерисовке соответствующих диаграмм у конкретных наблюдателей, в качестве которых выступают классы Круговая Диаграмма и Столбиковая Диаграмма.
Использование паттерна Наблюдатель не только упрощает взаимодействие между объектами соответствующих классов, но и позволяет вносить изменения в реализацию операций классов субъекта и наблюдателей независимо друг от друга.
При этом процесс добавления или удаления наблюдателей никак не влияет на особенности реализации класса субъекта.
В настоящее время паттерны проектирования реализованы в инструментальном средстве Model Maker 7 компании ModelMaker Tools BV (www.modelmakertools.com), которое поддерживает нотацию языка UML и позволяет генерировать программный код на языке Delphi Pascal. Паттерны проектирования также реализованы в CASE-средстве Together 2005 компании Borland (www.borland.com), которое поддерживает нотации языка UML версий 1.4 и 2.0 и позволяет генерировать программный код на языке Java. Описание этих средств и особенностей реализации в них нотаций языка UML будет рассмотрено в отдельных курсах лекций.
В заключение следует отметить, что язык UML представляет собой нотацию для визуального моделирования программных систем и бизнес-процессов. В то же время описание языка UML не содержит сведений относительно того, каким образом и в какой последовательности следует разрабатывать канонические диаграммы при выполнении конкретных проектов. Соответствующая информация относится к области методологии проектирования программных систем. В настоящее время наиболее известны следующие методологии:
Описание этих методологий и особенностей использования в них нотаций языка UML также будет рассмотрено в отдельных курсах лекций.

![]() | © 2003-2007 INTUIT.ru. Все права защищены. |
Паттерны, их классификация
При реализации проектов по разработке программных систем и моделированию бизнес-процессов встречаются ситуации, когда решение проблем в различных проектах имеют сходные структурные черты. Попытки выявить похожие схемы или структуры в рамках объектно-ориентированного анализа и проектирования привели к появлению понятия паттерна, которое из абстрактной категории превратилось в непременный атрибут современных CASE-средствПаттерны ООАП различаются степенью детализации и уровнем абстракции. Предлагается следующая общая классификация паттернов по категориям их применения:
Архитектурные паттерны(Architectural patterns) - множество предварительно определенных подсистем со спецификацией их ответственности, правил и базовых принципов установления отношений между ними.
Архитектурные паттерны предназначены для спецификации фундаментальных схем структуризации программных систем. Наиболее известными паттернами этой категории являются паттерны GRASP (General Responsibility Assignment Software Pattern). Эти паттерны относятся к уровню системы и подсистем, но не к уровню классов. Как правило, формулируются в обобщенной форме, используют обычную терминологию и не зависят от области приложения. Паттерны этой категории систематизировал и описал К. Ларман.
Паттерны проектирования (Design patterns) - специальные схемы для уточнения структуры подсистем или компонентов программной системы и отношений между ними.
Паттерны проектирования описывают общую структуру взаимодействия элементов программной системы, которые реализуют исходную проблему проектирования в конкретном контексте. Наиболее известными паттернами этой категории являются паттерны GoF (Gang of Four), названные в честь Э. Гаммы, Р. Хелма, Р. Джонсона и Дж. Влиссидеса, которые систематизировали их и представили общее описание. Паттерны GoF включают в себя 23 паттерна. Эти паттерны не зависят от языка реализации, но их реализация зависит от области приложения.
Паттерны анализа (Analysis patterns) - специальные схемы для представления общей организации процесса моделирования.
Паттерны анализа относятся к одной или нескольким предметным областям и описываются в терминах предметной области. Наиболее известными паттернами этой группы являются паттерны бизнес-моделирования ARIS (Architecture of Integrated Information Systems), которые характеризуют абстрактный уровень представления бизнес-процессов. В дальнейшем паттерны анализа конкретизируются в типовых моделях с целью выполнения аналитических оценок или имитационного моделирования бизнес-процессов.
Паттерны тестирования (Test patterns) - специальные схемы для представления общей организации процесса тестирования программных систем.
К этой категории паттернов относятся такие паттерны, как тестирование черного ящика, белого ящика, отдельных классов, системы. Паттерны этой категории систематизировал и описал М. Гранд. Некоторые из них реализованы в инструментальных средствах, наиболее известными из которых является IBM Test Studio. В связи с этим паттерны тестирования иногда называют стратегиями или схемами тестирования.
Паттерны реализации (Implementation patterns) - совокупность компонентов и других элементов реализации, используемых в структуре модели при написании программного кода.
Эта категория паттернов делится на следующие подкатегории: паттерны организации программного кода, паттерны оптимизации программного кода, паттерны устойчивости кода, паттерны разработки графического интерфейса пользователя и др. Паттерны этой категории описаны в работах М. Гранда, К. Бека, Дж. Тидвелла и др. Некоторые из них реализованы в популярных интегрированных средах программирования в форме шаблонов создаваемых проектов. В этом случае выбор шаблона программного приложения позволяет получить некоторую заготовку программного кода.
Паттерны проектирования в нотации языка UML
В сфере разработки программных систем наибольшее применение получили паттерны проектирования GoF, некоторые из них реализованы в популярных средах программирования. При этом паттерны проектирования могут быть представлены в наглядной форме с помощью рассмотренных обозначений языка UML.Паттерн проектирования в контексте языка UML представляет собой параметризованную кооперацию вместе с описанием базовых принципов ее использования.
При изображении паттерна используется обозначение параметризованной кооперации языка UML (рис. 14.1), которая обозначается пунктирным эллипсом. В правый верхний угол эллипса встроен пунктирный прямоугольник, в котором перечислены параметры кооперации, которая представляет тот или иной паттерн.

Рис. 14.1. Изображение паттерна в форме параметризованной кооперации
В последующем параметры паттерна могут быть заменены различными классами, чтобы получить реализацию паттерна в рамках конкретной кооперации. Эти параметры специфицируют используемые классы в форме ролей классов в рассматриваемой подсистеме. При связывании или реализации паттерна любая линия помечается именем параметра паттерна, которое является именем роли соответствующей ассоциации. В дополнение к диаграммам кооперации особенности реализации отдельных паттернов представляются с помощью диаграмм последовательности.
Паттерны проектирования позволяют решать различные задачи, с которыми постоянно сталкиваются проектировщики объектно-ориентированных приложений. Ниже представлен полный список паттернов проектирования GoF и краткое описание назначения каждого из них (таблица 14.1).
| 1 | Abstract Factory | Абстрактная фабрика | Предоставляет интерфейс для создания множества связанных между собой или независимых объектов, конкретные классы которых неизвестны. |
| 2 | Adapter(синоним - Wrapper) | Адаптер (Обертка) | Преобразует существующий интерфейс класса в другой интерфейс, который понятен клиентам. При этом обеспечивает совместную работу классов, невозможную без данного паттерна из-за несовместимости интерфейсов. |
| 3 | Bridge | Мост | Отделяет абстракцию класса от его реализации, благодаря чему появляется возможность независимо изменять то и другое. |
| 4 | Builder | Строитель | Отделяет создание сложного объекта от его представления, позволяя использовать один и тот же процесс разработки для создания различных представлений. |
| 5 | Chain of Responsibility | Цепочка обязанностей | Позволяет избежать жесткой зависимости отправителя запроса от его получателя, при этом объекты-получатели связываются в цепочку, а запрос передается по цепочке, пока какой-то объект его не обработает. |
| 6 | Command | Команда | Инкапсулирует запрос в виде объекта, обеспечивая параметризацию клиентов типом запроса, установление очередности запросов, протоколирование запросов и отмену выполнения операций. |
| 7 | Composite | Компоновщик | Группирует объекты в иерархические структуры для представления отношений типа "часть-целое", что позволяет клиентам работать с единичными объектами так же, как с группами объектов. |
| 8 | Decorator | Декоратор | Применяется для расширения имеющейся функциональности и является альтернативой порождению подклассов на основе динамического назначения объектам новых операций. |
| 9 | Facade | Фасад | Предоставляет единый интерфейс к множеству операций или интерфейсов в системе на основе унифицированного интерфейса для облегчения работы с системой. |
| 10 | Factory Method | Фабричный метод | Определяет интерфейс для разработки объектов, при этом объекты данного класса могут быть созданы его подклассами. |
| 11 | Flyweight | Приспособленец | Использует принцип разделения для эффективной поддержки большого числа мелких объектов. |
| 12 | Interpreter | Интерпретатор | Для заданного языка определяет представление его грамматики на основе интерпретатора предложений языка, использующего это представление. |
| 13 | Iterator | Итератор | Дает возможность последовательно перебрать все элементы составного объекта, не раскрывая его внутреннего представления. |
| 14 | Mediator | Посредник | Определяет объект, в котором инкапсулировано знание о том, как взаимодействуют объекты из некоторого множества. Способствует уменьшению числа связей между объектами, позволяя им работать без явных ссылок друг на друга и независимо изменять схему взаимодействия. |
| 15 | Memento | Хранитель | Дает возможность получить и сохранить во внешней памяти внутреннее состояние объекта, чтобы позже объект можно было восстановить точно в таком же состоянии, не нарушая принципа инкапсуляции. |
| 16 | Observer | Наблюдатель | Специфицирует зависимость типа "один ко многим" между различными объектами, так что при изменении состояния одного объекта все зависящие от него получают извещение и автоматически обновляются. |
| 17 | Prototype | Прототип | Описывает виды создаваемых объектов с помощью прототипа, что позволяет создавать новые объекты путем копирования этого прототипа. |
| 18 | Proxy | Заместитель | Подменяет выбранный объект другим объектом для управления контроля доступа к исходному объекту. |
| 19 | Singleton | Одиночка | Для выбранного класса обеспечивает выполнение требования единственности экземпляра и предоставления к нему полного доступа. |
| 20 | State | Состояние | Позволяет выбранному объекту варьировать свое поведение при изменении внутреннего состояния. При этом создается впечатление, что изменился класс объекта. |
| 21 | Strategy | Стратегия | Определяет множество алгоритмов, инкапсулируя их все и позволяя подставлять один вместо другого. При этом можно изменять алгоритм независимо от клиента, который им пользуется. |
| 22 | Template Method | Шаблонный метод | Определяет структуру алгоритма, перераспределяя ответственность за некоторые его шаги на подклассы. При этом подклассы могут переопределять шаги алгоритма, не меняя его общей структуры. |
| 23 | Visitor | Посетитель | Позволяет определить новую операцию, не меняя описаний классов, у объектов которых она вызывается. |
В качестве примеров рассматриваются два паттерна проектирования, которые нашли наибольшее применение при проектировании программных систем: паттерны Фасад и Наблюдатель.
Программирование: Языки - Технологии - Разработка
- Программирование
- Технологии программирования
- Разработка программ
- Работа с данными
- Методы программирования
- IDE интерфейс
- Графический интерфейс
- Программирование интерфейсов
- Отладка программ
- Тестирование программ
- Программирование на Delphi
- Программирование в ActionScript
- Assembler
- Basic
- Pascal
- Perl
- VBA
- VRML
- XML
- Ada
- Lisp
- Python
- UML
- Форт
- Языки программирования




