Материаловедение и ТКМ

Алитирование (Al)


Алитированием называется процесс насыщения поверхности стали алюминием. В результате алитирования сталь приобретает высокую окалиностойкость (до850—900° С)   и   коррозионную стойкость в атмосфере и в ряде сред.
При алитировании в порошкообразных смесях чистые детали вместе со смесью упаковывают в железный ящик. В рабочую смесь входят: порошковый алюминий (25—50%) или ферроалюминий (50—75%), окись алюминия (25—50%) и хлористый алюминий (~1,0%). Процесс осуществляется при температуре 900—1000°С в течение 3—12 ч.
Реже применяют алитирование в ваннах с расплавленным алюминием. Алитируемые детали погружают в расплавленный алюминий (92—94% А1 и 6—8% Fe). Железо добавляют для того, чтобы предотвратить растворение обрабатываемых деталей в алюминии. Процесс проводят при температурах 700—800°С в течение 45— 90 мин.
Алитирование в расплавленном алюминии отличается от алитирования в порошкообразных смесях простотой метода, быстротой и более низкими температурами. Основной недостаток процесса — налипание алюминия на поверхность деталей.
Иногда применяют металлизацию поверхности стали алюминием (напыление слоя алюминия на обрабатываемую поверхность) с последующим диффузионным отжигом при температуре 900—1000°С в течение 1—3 ч.
Для предохранения алюминия от окисления во время диффузионного отжига изделие покрывают обмазкой, состоящей из серебристого графита (48%), кварцевого песка (30%), глины (20%), хлористого алюминия(2%) и 20—25% от массы первых четырех составляющих - жидкого стекла.
Алитирование стали металлизацией с последующим диффузионным отжигом в несколько раз дешевле, чем в порошках. Агитированный слой представляет собой твердый раствор алюминия в железе, концентрация алюминия в поверхностном слое достигает 30-40%.  Алитированию подвергают трубы, инструмент для литья цветных сплавов, чехлы термопар, детали газогенераторных машин и т. д.


Аморфное состояние металлов


При сверхвысоких скоростях охлаждения из жидкого состояния диффузионные процессы настолько замедляются, что подавляется образование зародышей и рост кристаллов. В этом случае при затвердевании образуется аморфная структура. Материалы с такой структурой получили название аморфные сплавы или металлические стекла.
Аморфное состояние обеспечивает металлическим материалам свойства, значительно отличающиеся от свойств соответствующих материалов с кристаллической структурой. Так, аморфные магнитомягкие материалы характеризуются прямоугольной петлей гистерезиса, высокой магнитной проницаемостью и очень малой коэрцитивной силой. При этом магнитные свойства материала малочувствительны к механическим воздействиям на него.  
Аморфное состояние металлов
Получены аморфные материалы и с высокой магнитной энергией. Удельное электрическое сопротивление аморфных металлических материалов в 2 — 3 раза выше, чем у аналогичных сплавов с кристаллической структурой. Аморфные металлические материалы удачно сочетают высокие прочность, твердость и износостойкость с хорошей пластичностью и коррозионной стойкостью. Большое практическое значение имеет также и возможность получения аморфных металлов в виде ленты, проволоки диаметром несколько микрометров непосредственно при литье, минуя такие дорогостоящие операции, как ковка, прокатка, волочение, промежуточные отжиги, зачистки, травление.
На рисунке показана связь характерных графиков изменения свободной энергии возможных фаз при трех определенных температурах t1, t2, t3 с диаграммой состояния. При температуре t2 между точками а и b в термодинамическом равновесии сосуществуют две фазы: жидкий раствор состава ха и твердый раствор состава xb. Значения свободных энергий этих растворов соответствуют точкам a' и b'. Для более точного построения линий ликвидус и солидус необходимо иметь несколько графиков для интервала температур между t1и t3.
Термодинамическое обоснование диаграммы состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях


Азотирование


Азотированием называется процесс насыщения поверхности стали азотом. Процесс осуществляется в среде аммиака при температуре 480—650° С. При этих температурах выделяется атомарный азот, который диффундирует в поверхностные слои детали.
Для азотирования применяют среднеуглеродистые легированные стали. При азотировании легированных сталей азот образует с легирующими элементами устойчивые нитриды, которые придают азотированному слою высокую твердость.
Перед азотированием детали подвергают термической обработке, состоящей из закалки и высокотемпературного отпуска. Затем производят механическую обработку, придающую окончательные размеры изделию.
Участки, не подлежащие азотированию, защищают тонким слоем (0,001—0,015 мм) олова, нанесенным электролитическим методом, или жидким стеклом. В процессе азотирования олово расплавляется и благодаря поверхностному натяжению удерживается на поверхности стали в виде тонкой непроницаемой для азота пленки. Продолжительность процесса зависит от толщины слоя. Обычно процесс азотирования ведут при температурах 500—520° С. В этом случае получают слои толщиной до 0,5 мм за 24—90 ч.
Для ускорения процесса азотирования применяют двухступенчатый цикл. Вначале азотирование ведут при 500—520°С, а затем температуру повышают до 580—600° С. Это ускоряет процесс в 1,5—2 раза при сохранении высокой твердости азотированного слоя.
В процессе азотирования изменяются размеры деталей за счет увеличения объема поверхностного слоя. Чем выше температура процесса и больше толщина азотированного слоя, тем больше изменение размеров деталей.
Для повышения коррозионной устойчивости изделий азотирование проводят при температуре 600—700°С в течение 15 мин. для мелких деталей и 6—10 ч. для крупных деталей.
Процесс жидкостного азотирования осуществляют при температуре 570°С в расплаве циансодержащих солей. В ходе процесса расплав непрерывно продувается сухим и чистым воздухом, что обеспечивает превращения цианида  в цианат, являющийся поставщиком атомов углерода и азота.
Преимуществом жидкостного азотирования является резкое сокращение времени получения насыщенного слоя по сравнению с газовым азотированием (слой толщиной 0,10-0,20 мм получают за 1,5-3 ч). Кроме того, отсутствие водорода в среде способствует
повышению вязкости слоя. Недостатком процесса является применение ядовитых солей.
Широкое применение получает ионное азотирование. По сравнению с газовым азотированием оно имеет ряд преимуществ: меньшую продолжительность   процесса,   более   высокое   качество азотированного слоя, пониженную хрупкость слоя.


Борирование (B)


Борированием называется насыщение стали бором. Борирование проводят с целью повышения стойкости против абразивного износа. Толщина борированных слоев не превышает 0,3 мм.
Широкое распространение получил метод электролизного борирования в расплавленных солях, содержащих бор. Деталь служит катодом в ванне с расплавленной бурой. Температура процесса 900—950° С. Процесс можно вести и без электролиза в ваннах с расплавленными хлористыми солями,  в которые добавляют порошкообразный ферробор или карбид бора.
Применяют также и метод газового борирования. В этом случае насыщение бором проводят в среде диборана  в смеси с водородом при температуре 850—900° С.
Борированию подвергают втулки грязевых нефтяных насосов, штамповый инструмент и т. д.


Бороволокниты


Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя — борных волокон,
Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.
Помимо непрерывного борного волокна применяют комплексные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала.
В качестве матриц для получения бороволокнитов используют модифицированные эпоксидные и полиамидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при температуре не свыше 100 °С; КМБ-2к работоспособен при 300 °С.
Бороволокниты обладают высокими сопротивлениями усталости, они стойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.
Изделия из бороволокнитов применяют в авиационной и космической технике (профили, панели, роторы и лопатки компрессоров, лопасти винтов и трансмиссионные валы вертолетов и т. д.).


Цементация


Цементацией называется процесс насыщения поверхностного слоя стальных изделий углеродом. Цементация осуществляется с целью получения высокой твердости на поверхности изделия при сохранении вязкой сердцевины, она способствует повышению износостойкости и предела выносливости.
Цементации подвергают детали из низкоуглеродистых сталей (содержание углерода до 0,25%), работающие в условиях контактного износа и знакопеременных нагрузок (втулки, поршневые пальцы, кулачки, колонки и т. д.).
Для цементации детали поступают после механической обработки с припуском на шлифование 0,05— 0,10 мм. Участки, не подлежащие цементации, защищают тонким слоем меди (0,02—0,04 мм), наносимым электролитическим способом, или специальными обмазками, состоящими из смеси огнеупорной глины, песка и асбеста, замешанных на жидком стекле, и др.
Цементация осуществляется при температурах 900—950°С. Чем меньше углерода в стали, тем выше температура нагрева для цементация. При этих температурах атомарный углерод адсорбируется на поверхности стали и диффундирует в глубь металла. В результате цементации содержание углерода в поверхностном слое составляет 0,8—1,0%. Более высокая концентрация углерода способствует охрупчиванию цементованного слоя.
Цементованный слой имеет переменную концентрацию углерода по толщине, которая уменьшается от поверхности к сердцевине. В связи с этим после медленного охлаждения в структуре цементованного слоя можно различить три зоны: заэвтектоидную, состоящую из перлита и цементита вторичного; эвтектоидную, состоящую из перлита; доэвтектоидную, состоящую из перлита и феррита.
За толщину цементованного слоя обычно принимают сумму заэвтектоидной, эвтектоидной и половины доэвтектоидной зон. Обычно толщина слоя для большинства стаей составляет 0,8—1,4 мм.
Различают два вида цементации: твердую и газовую. Среда, в которой проводят цементацию, называется карбюризатором.
Цементация в твердой среде

 Карбюриза тором является активированный древесный уголь (дубовый или березовый), а также каменноугольный полукокс и торфяной кокс. Для ускорения процесса к древесному углю добавляют активизаторы — углекислый барий, кальцинированную соду, поташ.

Подготовленные для цементации изделия укладывают в металлический ящик. Предварительно в ящик насыпают слой карбюризатора 20—30 см. Детали укладывают слоями на расстоянии 10—15 мм друг от друга. Каждый слой деталей засыпают карбюризатором и на него укладывают следующий слой деталей и т. д. Последний слой засыпают карбюризатором и ящик накрывают крышкой, края которой обмазывают огнеупорной глиной или смесью глины с песком. Иногда вместо крышки кладут лист асбеста и сверху обмазывают глиной. После этого ящик помещают в печь с температурой 900—950°С.

В ящике между кусочками угля имеется воздух, кислород которого взаимодействует с углеродом карбюризатора, образуя окись углерода СО. Соприкасаясь с поверхностью деталей, окись углерода диссоциирует.

Цементация


Цементация


Выделившийся атомарный углерод диффундирует в глубь металла. Добавление углекислых солей активизирует процесс цементации.

Продолжительность выдержки в печи при температуре цементации зависит от требуемой толщины цементованного слоя. На практике выдержка принимается из расчета роста слоя со скоростью 0,1 мм в час. Например, слой толщиной 1 мм получают за 9,5-10,4 ч.

Для контроля над протеканием процесса и толщины цементованного слоя в ящик вместе с деталями закладывают «свидетели» - образцы диаметром 10—15 мм, изготовленные из той же марки стали, что и деталь. Во время цементации «свидетели» периодически вынимают, ломают и по излому определяют толщину цементованного слоя.

Повышение температуры цементации до 950—1000° С позволяет значительно ускорить процесс, но такой режим применим для наследственно мелкозернистых сталей.

Ящики после цементации охлаждают на воздухе и потом разбирают.


Участки изделия, не подлежащие цементации, защищают, нанося гальваническое покрытие медью. После цементации детали подвергают нормализации для измельчения зерна, повторной закалке и низкотемпературному отпуску.

Структура сердцевины зависит от состава стали и режима закалки. У углеродистых сталей она состоит из феррита и сорбита или троостита, а у легированных — из малоуглеродистого мартенсита.

Газовая цементация

В настоящее время газовая цементация является основным процессом цементации на заводах массового производства. При газовой цементации сокращается длительность процесса, так как отпадает необходимость прогрева ящиков, можно обеспечить более полную механизацию и автоматизацию процесса, упрощается последующая термическая обработка и, самое главное, можно получить заданную концентрацию углерода в слое.

Цементацию выполняют в шахтных, муфельных или безмуфельных печах непрерывного действия. При цементации в шахтных печах для получения науглероживающей атмосферы применяют метан, керосин, синтин, бензол и т. д.  В печах непрерывного действия чаще используют метан. Для получения заданной концентрации углерода (обычно 0,8%) применяют атмосферы с регулируемым потенциалом углерода.

Под углеродным потенциалом атмосферы понимают определенную концентрацию углерода на поверхности цементованного слоя. Для ускорения процесса углеродный потенциал атмосферы в печи меняют по зонам. Вначале его поддерживают высоким, обеспечивающим получение в поверхностном слое концентрации углерода 1,3— 1,4%, а затем его снижают для получения в этом слое оптимального содержания углерода (0,8%).

С этой целью в первую зону, занимающую примерно 2/3 длины печи, подают газ, состоящий из смеси природного (10—15%) и эндотермического (90—85%) газов. Во вторую зону подают только эндотермический газ, находящийся в равновесии с заданной концентрацией углерода (0,8%) на поверхности. При этом за счет диффузии углерода в глубь металла и взаимодействия поверхности детали с эндотермической атмосферой концентрация углерода на поверхности уменьшается и происходит более равномерное его распределение по толщине цементованного слоя.

После газовой цементации применяют закалку (для наследственно мелкозернистых сталей) непосредственно из цементационной печи, предварительно сделав подстуживание до температуры 850—830°С. Заключительной операцией является низкотемпературный отпуск при температуре 160—180° С.


Центробежное литье


Сущность процесса литья центробежным способом заключается в том, что заполнение формы жидким сплавом и кристаллизация его происходит под воздействием центробежных сил. Центробежным способом получают отливки, имеющие не только форму тел вращения, но и другие фасонные отливки.
Детали, имеющие форму тел вращения, например втулки, вкладыши подшипников, венцы, червячные колеса, барабаны и др., отливают на центробежных машинах с вертикальной или с горизонтальной осью вращения.
Литье центробежным способом цветных сплавов широко распространено. Объясняется это тем, что, наряду с повышением качества литья, значительно снижается расход ценных цветных металлов, уменьшается брак и снижается стоимость отливок.
Одним из преимуществ литья тяжелых цветных сплавов центробежным способом является то, что под действием центробежной силы неметаллические включения, как более легкие, вытесняются на внутреннюю (свободную) поверхность, откуда легко удаляются механической обработкой. Скорость вращения формы связана с температурным интервалом кристаллизации заливаемого сплава. Чем больше интервал кристаллизации, тем больше должна быть скорость вращения формы.


Цианирование и нитроцементация


Цианированием называется процесс одновременного насыщения поверхности деталей углеродом и азотом.
На состав и свойства цианированного слоя особое влияние оказывает температура процесса. Повышение температуры цианирования ведет к увеличению содержания углерода в слое, снижение температуры — к увеличению содержания азота. Толщина цианированного слоя также зависит от температуры и продолжительности процесса.
Различают жидкое и газовое цианирование. Газовое цианирование еще называют нитроцементацией. Жидкое цианирование проводят в расплавленных солях, содержащих цианистый натрий.
Цианирование при температурах 820—850°С позволяет осуществлять закалку непосредственно из ванны. После закалки следует низкотемпературный отпуск.
Цианирование при температурах 820—850°С позволяет получать слои толщиной 0,15-0,35 мм за 30-90 мин. Для получения слоев большой толщины (0,5-2,0 мм) применяют глубокое цианирование при температурах 900-950° С, длительность 1,5-6,0 ч. Глубокое цианирование имеет ряд преимуществ по сравнению с цементацией: меньше продолжительность процесса для получения слоя заданной толщины; меньше деформация и коробление; более высокое сопротивление износу и повышенная усталостная прочность.
После цианирования деталь охлаждают на воздухе, повторно нагревают для закалки и проводят низкотемпературный отпуск. Такая обработка необходима в связи с тем, что при температурах цианирования (900—950° С) сильно вырастает зерно аустенита и необходим повторный нагрев для его измельчения. Структура цианированного слоя после закалки такая же, как после цементации.
Недостатком цианирования является ядовитость цианистых солей. Поэтому цианирование проводят в специально выделенных помещениях с соблюдением мер предосторожности.
Нитроцементацию осуществляют при температурах 840—860°С в газовой смеси из науглероживающего газа и аммиака. Продолжительность процесса зависит от глубины насыщаемого слоя и составляет 1 —10 ч. Толщина слоя колеблется от 0,1 до 1,0 мм.
После нитроцементации изделия подвергают закалке и низкотемпературному отпуску при температуре 160— 180° С.
Низкотемпературное цианирование осуществляется при температурах 540—560°С в расплавленных цианистых слоях. Низкотемпературному цианированию подвергают инструмент из быстрорежущих сталей для повышения его стойкости при резании. В результате такой обработки образуется нитроцементованный слой толщиной 0,02—0,04 мм. Длительность процесса 1 —1,5 ч.


Диаграмма растяжения


Диаграмма растяжения


При действии на тело внешней растягивающей силы оно растягивается, и этот процесс отражается на диаграмме растяжения.
Различают относительное и абсолютное удлинение:
Диаграмма растяжения



1. Относительное
Диаграмма растяжения



2. Абсолютное
Диаграмма растяжения



            При этом материал испытывает механическое напряжение
Связь абсолютного удлинения и механического
Диаграмма растяжения

Диаграмма растяжения

Диаграмма растяжения

Диаграмма растяжения



удлинения отражается в законе Гука                               или 
где k – коэффициент податливости,
Диаграмма растяжения
 - коэффициент упругости (модуль Юнга)

Зона ОА носит название зоны упругости (
Диаграмма растяжения
).
Здесь материал подчиняется закону Гука. На   рисунке   этот   участок  для большей наглядности показан с отступлением от масштаба. Удлинения на  участке ОА  очень малы, и прямая ОА, будучи вычерченной в масштабе, совпадала с осью ординат. Величина силы, для которой остается справедливым закон Гука, зависит от размеров образца и физических свойств материала. Для высококачественных   сталей   эта   величина имеет большее значение. Для таких металлов, как медь, алюминий, свинец,   она  оказывается  в  несколько  раз  меньшей.
Зона АВ называется зоной общей текучести, а участок АВ диаграммы — площадкой текучести. Здесь происходит существенное изменение длины образца без заметного увеличения нагрузки. Наличие площадки текучести для металлов не является характерным. В большинстве случаев при испытании на растяжение и сжатие площадка АВ не обнаруживается.
Диаграмма растяжения



Зона ВС называется зоной упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но неизмеримо более медленным (в сотни раз), чем на упругом участке. В стадии упрочнения на образце намечается место будущего разрыва и начинает образовываться так называемая шейка — местное сужение образца.
По мере растяжения образца утонение шейки прогрессирует.
Когда относительное уменьшение площади сечения сравняется с относительным возрастанием напряжения, сила достигнет максимума. В дальнейшем удлинение образца происходит с уменьшением силы, хотя среднее напряжение в поперечном сечении шейки и возрастает. Удлинение образца носит в этом случае местный характер, и поэтому участок кривой CD называется зоной местной текучести. Точка D соответствует разрушению образца. У многих материалов разрушение происходит без заметного образования шейки.

Если испытуемый образец, не доводя до разрушения, разгрузить, то в процессе разгрузки зависимость между силой и удлинением изобразится прямой KL. Опыт показывает, что эта прямая параллельна прямой ОА. При разгрузке удлинение полностью не исчезает. Оно уменьшается на величину упругой части удлинения (отрезок LM). Отрезок OL представляет собой остаточное удлинение. Его называют также пластическим удлинением, а соответствующую ему деформацию — пластической деформацией. При повторном нагружении образца диаграмма растяжения принимает вид прямой LK и далее — кривой KCD, как будто промежуточной разгрузки и не было.

Диаграмма растяжения


Диаграмма растяжения



Чтобы дать количественную оценку описанным выше свойствам материала, перестроим диаграмму растяжения в координатах ? и ?. Эта диаграмма имеет тот же вид, что и диаграмма растяжения, но будет характеризовать уже не свойства образца, а свойства материала. Отметим на диаграмме характерные точки и дадим определение соответствующих им числовых величин. Наибольшее напряжение, до которого материал следует закону Гука, называется пределом пропорциональности ?п. Величина предела пропорциональности зависит от той степени точности, с которой начальный участок диаграммы можно рассматривать как прямую.

Упругие свойства материала сохраняются до напряжения, называемого пределом упругости. Под пределом упругости ?у понимается такое наибольшее напряжение, до которого материал не получает остаточных деформаций.Для того чтобы найти предел упругости, необходимо после каждой дополнительной нагрузки образец разгружать и следить, не образовалась ли остаточная деформация. Так как пластические деформации в отдельных кристаллах появляются уже в самой ранней стадии нагружения, ясно, что величина предела упругости, как и предела пропорциональности, зависит от требований точности, которые накладываются на производимые замеры.

Следующей   характеристикой   является предел текучести. Под пределом текучести понимается то напряжение, при котором происходит рост деформации без заметного увеличения нагрузки. Предел текучести легко поддается определению и является одной из основных механических характеристик материала.

Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит название предела прочности, или временного сопротивления, и обозначается через ?вр.


Диаграмма состояния железоуглеродистых сплавов


Среди диаграмм состояния металлических сплавов самое большое значение имеет диаграмма состояния системы железо-углерод. Это объясняется тем, что в технике наиболее широко применяют железоуглеродистые сплавы.
Имеются две диаграммы состояния железоуглеродистых сплавов: метастабильная, характеризующая превращения в системе железо-карбид железа (цементит), и стабильная, характеризующая превращение в системе железо - графит.
На то, что система железо - графит является более стабильной, чем система железо-цементит, указывает тот факт, что при нагреве до высоких температур цементит распадается на железо и графит, т. е. переходит в более стабильное состояние.
Компоненты и фазы в сплавах железа с углеродом
Железо и углерод — элементы полиморфные. Железо с температурой плавления 1539°С имеет две модификации - ? и ?. Модификация Fe?, существует при температурах до 911°С и от 1392 до 1539°С, имеет ОЦК решетку с периодом 0,286 нм. Важной особенностью Fe? является его ферромагнетизм ниже температуры 768 С, называемой точкой Кюри.
Модификация Fe? существует в интервале температур от 911 до 1392°С и имеет ГЦК решетку, период которой при 911°С равен 0,364 им. ГЦК решетка более компактна, чем ОЦК решетка. В связи с этим при переходе Fe? в Fe? объем железа уменьшается приблизительно на 1%.
Углерод существует в двух модификациях: графита и алмаза. При нормальных условиях стабилен графит, алмаз представляет собой его метастабильную модификацию. При высоких давлениях и температурах стабильным становится алмаз.
Фазы в сплавах железа с углеродом представляют собой жидкий раствор, феррит, аустенит, цементит и свободный углерод в виде графита.
Феррит (обозначают Ф) - твердый раствор внедрения углерода в Fe?. Различают низкотемпературный и высокотемпературный феррит. Предельная концентрация углерода в низкотемпературном феррите мала и составляет 0,02%, в высокотемпературном-0,1%. Столь низкая растворимость углерода в Fe? обусловлена малым размером межатомных пор


в ОЦК решетке. Значительная доля атомов углерода вынуждена размещаться
в дефектах.

Аустенит (обозначают А) - твердый раствор внедрения углерода в Fe?. Он имеет ГЦК решетку, межатомные поры в которой больше, чем в ОЦК решетке, поэтому растворимость углерода в Fe? значительно больше и достигает 2,14%. Аустенит пластичен, но прочнее феррита (НВ 1600-2000) при температуре 20-25 °С.

Цементит (обозначают Ц) - карбид железа  Fe3C. Содержит 6,69 %С и имеет сложную ромбическую решетку. При нормальных условиях цементит тверд (НВ 8000) и хрупок. Он слабо ферромагнитен и теряет ферромагнетизм при температуре 210°С. Температуру плавления цементита трудно определить в связи с его распадом при нагреве. Она установлена равной 1260°С при нагреве лазерным лучом.

Графит - углерод,         выделяющийся в железоуглеродистых сплавах в свободном состоянии. Имеет гексагональную кристаллическую решетку. Графит электропроводен, химически стоек, малопрочен, мягок.


Диффузионная металлизация


Диффузионная металлизация - это процесс диффузионного насыщения поверхностных слоев стали различными металлами. Она может осуществляться в твердых, жидких и газообразных средах.
При диффузионной металлизации в твердых средах применяют порошкообразные смеси, состоящие обычно из ферросплавов с добавлением хлористого аммония.
Жидкая диффузионная металлизация осуществляется погружением детали в расплавленный металл (например, цинк, алюминий).
При газовом способе насыщения применяют летучие хлористые соединения металлов, образующиеся при взаимодействии хлора с металлами при высоких температурах. Хлориды диссоциируют на поверхности железа и выделяющийся в атомарном состоянии металл диффундирует в железо.
Диффузия металлов в железе идет значительно медленнее, чем углерода и азота, потому что углерод и азот образуют с железом твердые растворы внедрения, а металлы - твердые растворы замещения. Это приводит к тому, что диффузионные слои при металлизации получаются в десятки раз более тонкими. Поверхностное насыщение стали металлами проводится при температурах 900—1200° С.


Диффузионный отжиг (гомогенизация)


В реальных условиях охлаждения расплава кристаллизация твердых растворов чаще всего протекает неравновесно: диффузионные процессы, необходимые для выравнивания концентрации растущих кристаллов по объему, отстают от процесса кристаллизации. В результате сохраняется неоднородность состава по объему кристалла - внутрикристаллическая ликвация: сердцевина кристаллов обогащена тугоплавким компонентом сплава, а наружные части кристаллов обогащены компонентом, понижающим температуру плавления.
Диффузионным отжигом называют длительную выдержку сплавов при высоких температурах, в результате которой уменьшается ликвационная неоднородность твердого раствора. При высокой температуре протекают диффузионные процессы, не успевшие завершиться при первичной кристаллизации.




























Диоды


В пластине полупроводника, на границе между двумя слоями с различного рода электропроводностями, образуется электронно-дырочный переход, называемый также           p-n-переходом или запирающим слоем. Этот слой обладает вентильными свойствами, т. е. односторонней проводимостью. Это явление можно пояснить следующими положениями. Концентрация электронов в n-области во много раз больше, чем их концентрация в                p-области, где они служат неосновными носителями заряда. Вследствие этого электроны диффундируют в область их низкой концентрации — p-область. Здесь они рекомбинируют с дырками акцепторов и таким путем образуют пространственный (объемный) отрицательный заряд ионизированных атомов акцепторов, не скомпенсированный положительным зарядом дырок — основных носителей заряда в этой области.
Одновременно происходит диффузия дырок в n-область. Здесь создается нескомпенсированный зарядом электронов пространственный положительный заряд ионов доноров. Таким путем между двумя областями полупроводника возникает двойной слой пространственного заряда, обедненный основными носителями заряда. Из-за наличия пространственных зарядов возникает перепад электрического потенциала между p- и            n-областями. Его называют потенциальным барьером, а его величину — высотой потенциального барьера.
Электронно-дырочный переход нельзя получить, наложив одну на другую пластины, изготовленные из полупроводников с различной примесной проводимостью, так как между пластинами неизбежно наличие поверхностных пленок или очень тонкого слоя воздуха. Такой переход создается лишь посредством образования областей с различными электропроводностями в одной пластине полупроводника. Такой двухслойный полупроводниковый прибор с p-n-переходом называется полупроводниковым диодом.
Если положительный полюс источника электроэнергии соединен с p-областью полупроводникового диода, а отрицательный — с n-областью, то электрическое поле источника ослабляет до малой величины действие пространственных зарядов — снижает   потенциальный   барьер диода,   вследствие чего резко возрастает диффузия и вместе с ней ток через p-n-переход.   Такое   включение   полупроводникового   диода называется прямым.
При обратном включении полупроводникового диода, когда с p-областью соединен минус источника напряжения, а с n-областью — плюс этого источника, внешнее поле усиливает поле пространственных зарядов и удаляет  носители  заряда  с обеих сторон  перехода.  Через p-n-переход создается  в этом случае лишь весьма  малый ток,  обусловленный  движением   неосновных  носителей  заряда. Но из-за этого тока обратное сопротивление полупроводникового диода является конечной величиной.


Для стали и чугуна F = 3000 кгс


            Для сплава меди, никеля, алюминия          F = 1000 кгс
            Для мягких сплавов                                      F = 250 кгс


Дополнительные компоненты полимерных композиций


Полимерные материалы: пластические массы, пленки и волокна, лаки, компаунды, клеи, герметики, резины и т. д. редко состоят из одного полимера. Для улучшения их функциональных качеств они представляют собою обычно композиции из различных полимерных и неполимерных материалов, модифицирующих их свойства.
Чаще всего такими дополнительными компонентами, содержащимися во многих полимерных материалах, являются: стабилизаторы, наполнители, пластификаторы, мягчители и смазки, красители, растворители, другие модификаторы (отверждающие агенты, присадки, сообщающие негорючесть, повышенную нагревостойкость и т. п.).
Стабилизаторами называются вещества, добавляемые в большинство полимерных материалов (в количестве порядка десятых долей процента) для предотвращения реакций старения.
Наполнители — это частицы различных материалов, добавляемые во многие полимерные композиции для сообщения им специальных свойств (повышения прочности, сообщения магнитных свойств, электропроводности, снижения звуко- и теплопроводности и т. д.) или для их удешевления. Наполнители могут быть газообразными, жидкими и твердыми. Чаще всего их применяют в виде газообразных или твердых включений в полимерную основу.
Порошковые наполнители - древесная мука, окислы (ZnO, Ti02, SiO2), мел, каолин и другие. Они мало препятствуют растеканию пресспорошка в пресс-формах и позволяют получить дешевые изделия сложной конфигурации.
Волокнистые наполнители - хлопчатобумажное, стеклянное, борное волокно, обрезки бумаги и ткани позволяют получать материалы в два и более раза прочнее, чем при порошковых наполнителях.
Особенно высока прочность пластмасс (композиционных материалов) при применении в качестве наполнителей слоистых материалов ткани, шпона или стеклянных, длинных тонких волокон; волокон бора, графитовых нитей и т. п., уложенных оптимальным образом по отношению к действующим нагрузкам. Такие композиционные материалы обладают максимальной удельной прочностью, что значительно выше, чем у многих металлических материалов.
Из них готовят напряженные элементы самолетов и двигателей (корпусы, роторы и лопатки компрессоров, обшивку самолетов и т. д.).

Наполнение резин сажей или металлическими частицами придает им проводящие, а магнитными (например, ферритами) — магнитные свойства.

Наполнение газами достигается вспениванием в процессе получения полимеров, введением твердых частиц — порофоров, выделяющих газы при нагреве в размягченный полимер. Иногда вспенивания достигают введением в полимер легкокипящих жидкостей.

Пластификаторы - вещества, добавляемые в полимерные материалы для повышения эластичности и морозостойкости (снижения хрупкости), а также для снижения температуры переработки материалов в изделия. В некоторых случаях, например для эфиров целлюлозы, такая переработка горячим прессованием вообще была бы невозможна, ибо температура разложения непластифицированных продуктов лежит ниже их температуры размягчения.

Смазки, часто вводимые в состав различных полимерных композиций, способствуют отлипу деталей металлического оборудования, применяемого при переработке полимерной композиции в изделия. В качестве смазок используют стеарин, стеараты, парафин и другие легкоплавкие вещества.

Красители вводят в полимерные материалы для придания им красивого декоративного вида или в маркировочных целях. Растворимые в полимере красители нередко называются краской, нерастворимые - пигментами.

Другие присадки. В полимерных материалах могут содержаться и другие, кроме перечисленных, присадки, придающие материалам специальные качества.

Так, для уменьшения горючести композиций на основе горючих полимеров в них вводят 10—20% антипиренов — фосфорнокислый аммоний, трехокись сурьмы, хлорированный парафин или перхлорвинил и т. п.

Для придания полимерным материалам антисептических свойств и стойкости против действия грибковой плесени и разрушающего действия насекомых к ним добавляют антисептики, фунгициды и инсектоциды. В качестве таких веществ нередко служат соли ртути и меди, а также другие ядовитые вещества.Эти присадки особенно часто добавляют в краски, изоляцию проводов и другие полимерные материалы,   предназначенные   для работы в тропическом климате.


Фотодиоды


Фотодиод, как и фотоэлемент с запирающим слоем, представляет собой p-n-переход, включенный в цепь в запорном направлении, последовательно с внешним источником питания. При отсутствии светового потока через фотодиод протекает незначительный так называемый темповой ток. При освещении p-n-перехода вследствие генерации избыточных носителей обратный ток увеличивается пропорционально потокe, вызывая увеличение падения напряжения на нагрузочном сопротивлении. От фотоэлементов с внешним фотоэффектом фотодиоды выгодно отличаются малыми габаритами и весом, высокой интегральной чувствительностью и небольшим рабочим напряжением.
Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области р-n-перехода и в прилегающих к нему областях под действием излучения.
Электрическое поле р-n-перехода разделяет электроны и дырки. Неосновные носители электричества, для которых поле является ускоряющим, выводятся этим полем за переход. Основные носители задерживаются полем в своей области проводимости.
Фотодиоды

Упрощенная структура фотодиода и его условное графическое обозначение
Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения между анодом и катодом при разомкнутой цепи.
Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).
Обратимся к вольт-амперным характеристикам (ВАХ) фотодиода. Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область р-n-перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля р-n-перехода носители электрода движутся к электродам. В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.
Фотодиоды

В настоящее время коэффициент полезного действия солнечных элементов достигает 20%. Пока энергия, вырабатываемая солнечными элементами, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана. Но ожидается, что стоимость энергии, получаемой с помощью солнечных батарей, будет снижаться.
Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107—1010 Гц. Фотодиод часто используется в оптопарах светодиод-фотодиод.


Фотоэлементы с p-n-переходом


При освещении p-n-перехода в нем возникает э. д. с. Это явление используется в фотоэлементах с запирающим слоем, которые могут служить индикаторами лучистой энергии, не требующими внешнего питания, и преобразователями этой энергии в электрическую энергию.
Из p-полупроводника методом диффузии изготовляют тонкий слой, обладающий        n-проводимостью. Между этим слоем и p-полупроводником образуется p-n-переход. При отсутствии света переход находится в равновесном состоянии и в нем устанавливается равновесный потенциальный барьер. При облучении перехода в p-области генерируются электронно-дырочные пары. Электроны, образовавшиеся в p-области, диффундируют к       p-n-переходу и, подхватываясь контактным полем, перебрасываются в n-область. Дырки же преодолеть барьер не могут и остаются в p-области. Поэтому p-область заряжается положительно, n-область — отрицательно и в p-n-переходе появляется дополнительная разность потенциалов, приложенная в прямом направлении. Ее называют фотоэлектродвижущей силой.
Фотоэлементы с p-n-переходом


Принципиальная схема фотоэлемента (КПД ~15%)



Фоторезисторы


Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра.
Фоторезисторы

Схематическое изображение структуры фоторезистора и его условное графическое обозначение
Поток фотонов, падающих на полупроводник, вызывает появление пар электрон-дырка, увеличивающих проводимость (уменьшающих сопротивление). Это явление называют внутренним фотоэффектом (эффектом фотопроводимости).
Фоторезисторы


Фоторезисторы часто характеризуются зависимостью тока от освещенности при заданном напряжении на резисторе. Это так называемая люкс-амперная характеристика.

Люкс-амперная характеристика фоторезистора



Графит


Графит является одной из аллотропических разновидностей углерода. Это полимерный материал кристаллического пластинчатого строения. Он образован параллельными слоями гексагональных сеток.
Графит

Кристаллическая решетка графита
В узлах каждой ячейки располагаются атомы углерода. Межатомное расстояние равно 0,143 нм. Между атомами действуют силы прочной ковалентной связи. Отдельные плоскости расположены на расстоянии 0,335 нм и связаны между собой ван-дер-ваальсовыми силами. Слоистая структура графита и слабая связь между соседними плоскостями обусловливают анизотропию всех свойств кристаллов графита во взаимно перпендикулярных направлениях. Между отдельными пластинками в решетке графита имеются свободные электроны, сообщающие графиту электро- и теплопроводность, металлический блеск.
Графит не плавится при атмосферном давлении, а при 3700°С сублимирует, минуя стадию плавления, с затратой значительной тепловой энергии на этот процесс.
Графит встречается в природе, а также получается искусственным путем. Качества природного графита невысоки, он содержит много примесей, порист, свойства почти изотропны. Поэтому его применяют лишь как антифрикционный материал и в электротехнике. Искусственные виды графита: технический и пиролитический. Эти виды графита обладают совершенной кристаллической структурой, высокой анизотропией свойств и являются высокотемпературными конструкционными материалами.
В качестве исходных материалов при производстве технического графита применяют твердое сырье — нефтяной кокс и каменноугольный пек в качестве связующего вещества. Заготовки формуются в процессе прессования или протяжки. Процесс графитизации осуществляется путем нагрева заготовок (обожженных при 1200°С) до 3000 С. Технический графит имеет степень анизотропии физико-механических свойств 3:1.
Паралитический графит получается из газообразного сырья. Он представляет собой продукт пиролиза углеводородов (метана), который осаждается на нагретых до 1000-2500 °С поверхностях формы из технического графита или керамики.
Полученный пирографит можно отделить от подложки и получить деталь или наносить его в виде покрытия на различные материалы с целью защиты их от действия высоких температур. Пирографит характеризуется степенью анизотропии, равной 100 (и более) : 1.

Для повышения качества технического графита применяется рекристаллизация при обжатии под давлением до 50 МП а и температуре свыше 2500°С, этим повышаются плотность и прочность графита.

Физико-механические свойства искусственного графита. Свойства графита зависят от природы исходного сырья, технологии получения, плотности, степени ориентации кристаллов и др.

Графит легко расщепляется по плоскости спайности. Твердость его небольшая. Плотность пористого графита составляет 200— 1200 кг/м3, конструкционного — 1500—1850 кг/м3, пирографита 960—2200 кг/м3. (Теоретическая плотность графита 2265 кг/м8.) Пористость может составлять 80 % и более.

Графит является очень хрупким материалом. Его прочность при сжатии выше, чем при изгибе и растяжении. Для графита характерно увеличение прочности и модуля упругости при нагреве. До температуры 2200— 2400°С прочность технического графита повышается на 40—60 % и лишь при дальнейшем нагреве прочность теряется. При температуре выше     1700°С проявляется ползучесть, которая имеет небольшую скорость при 2300—2900°С и напряжении 30—10 МПа. Графит хорошо проводит теплоту, поэтому его можно использовать и как проводник теплоты, и как теплоизолятор. Графит устойчив к воздействию тепловых ударов. Сочетание особых свойств графита делает его перспективным материалом высокой жаропрочности и теплозащитным материалом.

В условиях применения графита при высоких температурах, когда теплоотдача излучением является решающим фактором теплообмена, большое значение имеет степень черноты поверхности материала. Степень черноты графитовых материалов составляет 0,7—0,9, она возрастает при нагреве и шероховатости поверхности.

Графит обладает хорошими антифрикционными свойствами (f = 0,28), поэтому он применяется в качестве антифрикционных материалов, основным преимуществом которых является способность работать без смазывания в условиях высоких или низких температур, больших скоростей, агрессивных сред и т.п.

Недостатком графита является склонность его к окислению, начиная с температур 400—800°С, с выделением газообразных продуктов. Поэтому поверхность графита защищают введением легирующих добавок (Nb, Та, Si), которые делают структуру графита мелкозернистой, повышают его твердость и прочность, или нанесением защитных покрытий. Применяют силицирование графита путем обработки его поверхности парами кремнезема (при этом на поверхности графита образуется карбид кремния, обладающий высокой твердостью и прочностью) или нанесением покрытия из керамики.

Графит применяют в высоконагреваемых конструкциях летательных аппаратов и их двигателей, в энергетических ядерных реакторах, в качестве антифрикционного материала и в виде углеграфитовых волокнистых изделий.


Холодная и горячая деформации


Деформирование металлов подразделяют на холодное и горячее в зависимости от температуры. Холодное деформирование проводят ниже температуры рекристаллизации, металл наклепывается и сохраняет наклеп. Горячее деформирование приводят выше температуры рекристаллизации, когда получаемый наклеп снимается одновременно протекающей рекристаллизацией. Если рекристаллизация не устраняет наклеп, то он сохраняется частично или полностью. Это достигается при особых условиях обработки и охлаждения металла. Например, горячее деформирование с высокими скоростями и большими деформациями с дальнейшим быстрым охлаждением металла ниже температуры рекристаллизации сохраняет наклеп.


Хромирование (Cr)


Хромирование (поверхностное насыщение хромом) проводят для повышения коррозионной стойкости, кислостостойкости, окалиностойкости (до 850° С) и т. д. Хромирование средне- и высокоуглеродистых сталей повышает твердость и износостойкость.
Хромирование чаще всего проводят в порошкообразных смесях (50% металлического хрома или феррохрома, 49% окиси алюминия и 1% хлористого аммония). Процесс осуществляется при температуре 1000—1050°С. Диффузионный слой, получаемый при хромировании углеродистых сталей, состоит из карбидов хрома. Толщина хромированного слоя достигает 0,15—0,20 мм при длительности процесса 6—15 ч. Чем больше углерода в стали, тем меньше толщина слоя.
Значительно реже применяется газовое хромирование. Процесс проводят в среде, содержащей пары CrCl2. Пары CrCl2 получают пропусканием осушенных Н2 и НС1 через феррохром или хром при температуре 980°С. За 3-5 ч получают слой толщиной 0,06-0,10 мм.
Иногда применяют хромирование в вакууме. Изделия засыпают кусочками (диаметром 1—3 мм) хрома в стальном или керамическом тигле и помещают в вакуумную печь. При высокой температуре (960—1000° С) хром испаряется и диффундирует в сталь.
Хромирование применяют для пароводяной арматуры, клапанов, вентилей, а также деталей, работающих в агрессивных средах.


Износостойкость в больше,чем при шлифовке. Для коленчатых валов предел выносливости повышается на .





Эффект Холла


Предположим, что по пластине проводника, имеющей ширину a и толщину b, течет ток плотностью i. Выберем на боковых сторонах пластины точки C и D, разность потенциалов между которыми равна нулю. Если эту пластину поместить в магнитное поле с индукцией B, то между точками C и D возникает разность потенциалов VХ, называемая э. д. с. Холла. В не слишком сильных полях
Vx = rh Bai
Коэффициент пропорциональности rh называют постоянной Холла. Она имеет размерность L3/Q (L — длина, Q — электрический заряд) и измеряется в кубических метрах на кулон, (м3/Кл). Рассмотрим физическую природу эффекта  Холла.
На электрон, движущийся справа налево со скоростью v, действует сила Лоренца Fл: Fл = qvB
Эффект Холла

Под действием силы Лоренца электроны отклоняются к внешней грани пластины, заряжая ее отрицательно. На противоположной грани накапливаются нескомненсированные положительные заряды. Это приводит к возникновению электрического поля, направленного от C к D. Поле EХ действует на электроны с силой f = qEx, направленной против силы Лоренца. При f — Fл поперечное электрическое поле уравновешивает силу Лоренца и дальнейшее накопление электрических зарядов на боковых гранях пластины прекращается.
Эффект Холла получил наиболее широкое практическое применение из  всех гальваномагнитных явлений. Помимо исследования электрических свойств материалов он послужил основой для устройства большого класса приборов: магнитометров, преобразователей постоянного тока в переменный и переменного в постоянный, усилителей постоянного и переменного тока, генераторов сигналов переменного тока, фазометров, микрофонов и т. д.


Карбоволокниты


Карбоволокниты (углепласты) представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей в виде углеродных волокон (карбоволокон).
Высокая энергия связи С—С углеродных волокон позволяет им сохранять прочность при очень высоких температурах (в нейтральной и восстановительной средах до 2200°С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями. В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим (низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержанию карбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6—2,5 раза.
Карбоволокниты отличаются высоким статическим и динамическим сопротивлением усталости, сохраняют это свойство при нормальной и очень низкой температуре (высокая теплопроводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- к химически стойкие.
Карбостекловолокниты содержат наряду с угольными стеклянные волокна, что удешевляет материал.
Карбоволокниты с углеродной матрицей. Коксованные материалы получают из обычных полимерных карбоволокнитов, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800—1500°С образуются карбонизированные, при 2500—3000°С графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (температуре 1100°С и остаточном давлении 2660 Па) метан разлагается и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.
Образующийся при пиролизе связующего кокс имеет высокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару.
Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениям прочности и ударной вязкости в 5—10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200°С, на воздухе окисляется при 450 °С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35—0,45), а износ мал (0,7—1 мкм на торможение).
Полимерные карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и др.
Карбоволокниты с углеродной матрицей заменяют различные типы графитов. Они применяются для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры.


Керамика


Керамика — неорганический материал, получаемый из отформованных минеральных масс в процессе высокотемпературного обжига. В результате обжига (1200—2500°С) формируется структура материала (спекание), и изделие приобретает необходимые физико-механические свойства.
Техническая керамика включает искусственно синтезированные керамические материалы различного химического и фазового состава; она обладает специфическими комплексами свойств. Такая керамика содержит минимальное количество или совсем не содержит глины. Основными компонентами технической керамики являются оксиды и бескислородные соединения металлов. Любой керамический материал является многофазной системой. В керамике могут присутствовать кристаллическая, стекловидная и газовая фазы.
Кристаллическая фаза представляет собой определенные химические соединения или твердые растворы. Эта фаза составляет основу керамики и определяет значения механической прочности, термостойкости и других ее основных свойств.
Стекловидная фаза находится в керамике в виде прослоек стекла, связывающих кристаллическую фазу. Обычно керамика содержит 1—10 % стеклофазы, которая снижает механическую прочность и ухудшает тепловые показатели. Однако стеклообразующие компоненты (глинистые вещества) облегчают технологию изготовления изделий.
Газовая фаза представляет собой газы, находящиеся в порах керамики; по этой фазе керамику подразделяют на плотную, без открытых пор и пористую. Наличие даже закрытых пор нежелательно, так как снижается механическая прочность материала.
Большинство видов специальной технической керамики обладает плотной спекшейся структурой поликристаллического Строения, для ее получения применяют специфические технологические приемы.
Керамика на основе чистых оксидов
В производстве оксидной керамики используют в основном следующие оксиды: А12О3 (корунд), ZrO2, AlgO, CaO, BeO. Структура керамики однофазная поликристаллическая. Кроме кристаллической фазы может содержаться небольшое количество газов (поры) и стекловидной фазы, которая образуется в результате наличия примесей в исходных материалах.
Температура плавления чистых оксидов превышает 2000 °С, поэтому их относят к классу высокоогнеупоров. Как и для других неорганических материалов, оксидная керамика обладает высокой прочностью при сжатии по сравнению с прочностью при растяжении или изгибе; более прочными являются мелкокристаллические структуры, так как при крупнокристаллическом строении на границе между кристаллами возникают значительные внутренние напряжения.

С повышением температуры прочность керамики понижается. При использовании материалов в области высоких температур важным свойством является окисляемость. Керамика из чистых оксидов, как правило, не подвержена процессу окисления.

Керамика на основе А12О3 (корундовая) обладает высокой прочностью, которая сохраняется при высоких температурах, химически стойка, отличный диэлектрик. Термическая стойкость корунда невысокая. Изделия из него широко применяют во многих областях техники: резцы, используемые при больших скоростях резания, калибры, фильеры для протяжки стальной проволоки, детали высокотемпературных печей, подшипники печных конвейеров, детали насосов, свечи зажигания в двигателях внутреннего сгорания. Керамику с плотной структурой используют в качестве вакуумной, пористую — как термоизоляционный материал. В корундовых тиглях проводят плавление различных металлов, оксидов, шлаков. Корундовый материал микролит по свойствам превосходит другие инструментальные материалы.

Особенностью оксида циркония (ZrO2) является слабокислотная или инертная природа, низкий коэффициент теплопроводности. Рекомендуемые температуры применения керамики из ZrO2 2000— 2200°С; она используется для изготовления огнеупорных тиглей для плавки металлов и сплавов, как тепловая изоляция печей, аппаратов и реакторов, в качестве покрытия на металлах для защиты последних от действия температур.

Керамика на основе оксидов магния и кальция стойка к действию основных шлаков различных металлов, в том числе и щелочных. Термическая стойкость их низкая.


Оксид магния при высоких температурах летуч, оксид кальция способен к гидратации даже на воздухе. Их применяют для изготовления тиглей, кроме того, MgO используют для футеровки печей, пирометрической аппаратуры и т. д.

Керамика на основе оксида бериллия отличается высокой теплопроводностью, что сообщает ей высокую термостойкость. Прочностные свойства материала невысокие. Оксид бериллия обладает способностью рассеивать ионизирующее излучение высоких энергий, имеет высокий коэффициент замедления тепловых нейтронов, применяется для изготовления тиглей для плавки некоторых чистых металлов, в качестве вакуумной керамики в ядерных реакторах.

Керамика на основе оксидов тория и урана имеет высокую температуру плавления, но обладает высокой плотностью и радиоактивна. Эти виды керамики применяют для изготовления тиглей для плавки родия, платины, иридия и других металлов, в конструкциях электропечей, для тепловыделяющих элементов в энергетических реакторах.





Бескислородная керамика

 К тугоплавким бескислородным соединениям относятся соединения элементов с углеродом  — карбиды, с бором  — бориды, с азотом  — нитриды, с кремнием  — силициды и с серой  — сульфиды. Эти соединения отличаются высокими огнеупорностью (2500—3500°С), твердостью (иногда как у алмаза) и износостойкостью по отношению к агрессивным средам. Материалы обладают высокой хрупкостью. Сопротивление окислению при высоких температурах карбидов и боридов составляет     900—1000°С, несколько ниже оно у нитридов. Силициды могут выдерживать температуру 1300—1700°С.

Карбиды. Широкое применение получил карбид кремния — карборунд (SiC). Он обладает высокой жаростойкостью (1500— 1600°С), высокой твердостью, устойчивостью к кислотам и неустойчивостью к щелочам; применяется в качестве нагревательных стержней, защитных покрытий графита и в качестве абразива.

Бориды. Эти соединения обладают металлическими свойствами, их электропроводность очень высокая. Они износостойки, тверды, стойки к окислению.


В технике получили распространение дибориды тугоплавких металлов (TiB2, ZrB2 и др.). Их легируют кремнием или дисилицидами, что делает их устойчивыми до температуры их плавления. Диборид циркония стоек в расплавах алюминия, меди, чугуна, стали и др. Его используют для изготовления термопар, работающих при температуре свыше 2000°С в агрессивных средах, труб, емкостей, тиглей. Покрытия из боридов повышают твердость, химическую стойкость и износостойкость изделий.

Нитриды. Неметаллические нитриды являются высокотермостойкими материалами, имеют низкие теплопроводность и электропроводимость. При обычной температуре это изоляторы, а при высоких температурах — полупроводники. С повышением температуры коэффициент линейного расширения и теплоемкость увеличиваются. Твердость и прочность этих нитридов меньше, чем твердость и прочность карбидов и боридов. В вакууме при высоких температурах они разлагаются. Они стойки к окислению, действию металлических расплавов.

Силициды отличаются от карбидов и боридов полупроводниковыми свойствами, окалиностойкостью, они стойки к действию кислот и щелочей. Их можно применять при температуре 1300-1700°С, при 1000 °С они не реагируют с расплавленным свинцом, оловом и натрием. Дисилицид молибдена  используется наиболее широко в качестве стабильного электронагревателя в печах при температуре 1700°С в течение нескольких тысяч часов. Из спеченного MoSi2 изготовляют лопатки газовых турбин, сопловые вкладыши двигателей; его используют как твердый смазочный материал для подшипников, для защитных покрытий тугоплавких металлов от высокотемпературного окисления.

Сульфиды. Из сульфидов нашел практическое применение только дисульфид молибдена, имеющий высокие антифрикционные свойства. Его применяют в качестве сухого вакуумстойкого смазочного материала. Рабочие температуры на воздухе от -150 до 435°С, в вакууме до 1100°С, в инертной среде до 1540°С. Дисульфид молибдена электропроводен, немагнитен, стоек к радиации, воде, инертным маслам и кислотам, кроме крепких НС1, HNO3, и царской водке.При температуре выше 400°С начинается процесс окисления с образованием оксидной пленки, а при 592 °С образуется МоО3, являющийся абразивом.


Классификация конструкционных материалов


Перечень конструкционных материалов, применяемых в машино- и приборостроении, велик, и классифицировать их можно по разным признакам. Большинство из них, такие, как стали, чугуны, сплавы на основе меди и легких металлов, являются универсальными. Они обладают многочисленными достоинствами и используются в различных деталях и конструкциях.
Наряду с универсальными применяют конструкционные материалы определенного функционального назначения: жаропрочные, материалы с высокими упругими свойствами, износостойкие, коррозионно- и жаростойкие.
Классификация подразделяет конструкционные материалы по свойствам, определяющим выбор материала для конкретных деталей конструкций. Каждая группа материалов оценивается соответствующими критериями, обеспечивающими работоспособность в эксплуатации. Универсальные материалы рассматриваются в нескольких группах, если возможность применения их определяется различными критериями. В соответствии с выбранным принципом классификации все конструкционные материалы подразделяют на следующие группы:
1. Материалы, обеспечивающие жесткость, статическую и циклическую прочность
2. Материалы с особыми технологическими свойствами
3. Износостойкие материалы
4. Материалы  с  высокими  упругими свойствами
5. Материалы   с  малой   плотностью
6. Материалы   с   высокой   удельной прочностью
7. Материалы, устойчивые к воздействию температуры и рабочей среды


Классификация конструкционных сталей


Стали классифицируют по химическому составу, качеству, степени раскисления, структуре и прочности.
По химическому составу стали классифицируют на углеродистые и легированные. По концентрации углерода те и другие подразделяют на низкоуглеродистые (< 0,3 % С), среднеуглеродистые (0,3-0,7% С) и высокоуглеродистые (> 0,7% С). Легированные стали в зависимости от введенных элементов подразделяют на хромистые, марганцовистые, хромоникелевые, хромокремнемарганцевые и многие другие. По количеству введенных элементов их разделяют на низко-, средне- и высоколегированные. В низколегированных сталях количество легирующих элементов не превышает 5%, в среднелегированных содержится от 5 до 10%, в высоколегированных - более 10%.
По качеству стали классифицируют на стали обыкновенного качества, качественные, высококачественные и особовысококачественные.
Под качеством стали понимают совокупность свойств, определяемых металлургическим процессом ее производства. Однородность химического состава, строения и свойств стали, а также ее технологичность во многом зависят от содержания газов (кислорода, водорода, азота) и вредных примесей - серы и фосфора. Газы являются скрытыми, количественно трудно определяемыми примесями, поэтому нормы содержания вредных примесей служат основными показателями для разделения сталей по качеству. Стали обыкновенного качества содержат до 0,055% S и 0,045% Р, качественные - не более 0,04% S и 0,035% Р, высококачественные - не более 0,025% S и 0,025% Р, особовысококачественные - не более 0,015% S и 0,025% Р.
По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие. Раскисление - процесс удаления из жидкого металла кислорода, проводимый для предотвращения хрупкого разрушения стали при горячей деформации.
Спокойные стали раскисляют марганцем, кремнием и алюминием. Они содержат мало кислорода и затвердевают спокойно без газовыделения.
Кипящие стали раскисляют только марганцем. Перед разливкой в них содержится повышенное количество кислорода, который при затвердевании, частично взаимодействуя с углеродом, удаляется в виде СО. Выделение пузырей СО создает впечатление кипения стали, с чем и связано ее название. Кипящие слали дешевы, их производят низкоуглеродистыми и практически без кремния (Si < 0,07%), но с повышенным количеством газообразных примесей.

Полуспокойные стали по степени раскисления занимают промежуточное положение между спокойными и кипящими.

При классификации стали по структуре учитывают особенности ее строения в отожженном и нормализованном состояниях. По структуре в отожженном (равновесном) состоянии конструкционные стали разделяют на четыре класса: 1) доэвтектоидные, имеющие в структуре избыточный феррит; 2) эвтектоидные, структура которых состоит из перлита; 3) аустенитные; 4) ферритные. Углеродистые стали могут быть первых двух классов, легированные - всех классов.


Композиционные материалы с металлической матрицей


Композиционные материалы состоят из металлической матрицы, упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.
Композиционные материалы с металлической матрицей

Схема структуры (а) и армирования непрерывными волокнами (б) композиционных материалов:
1 — зернистый (дисперсно-упрочненный) материал; 2 — дискретный волокнистый композиционный материал; 3 — непрерывно волокнистый композиционный материал; 4 — непрерывная укладка волокон; 5 — двухмерная укладка волокон; 6,7 — объемная укладка волокон
Композиционные материалы с волокнистым наполнителем по механизму армирующего действия делят на дискретные и с непрерывным волокном. Дискретные волокна располагаются в матрице хаотично. Диаметр волокон от долей до сотен микрометров. Чем больше отношение длины к диаметру волокна, тем выше степень упрочнения.
Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму, по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.
Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50—100%), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.
Прочность композиционных материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами.
Поэтому прочность и модуль упругости волокон должны быть значительно больше, чем прочность и модуль упругости матрицы. Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.

   Материал

    ?В

    ?-1

 E, ГПа

   ?В/?

  E/ ?

  MПа

Бор — алюминий

Бор— магний

Алюминий — углерод

Алюминий — сталь

Никель — вольфрам

1300 1300

900

1700

700

600

500

300

350

150

220

220

220

110

500

590

450

370

84,6 100 100 24,40

Композиционные материалы на металлической основе обладают высокой прочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, к практически полностью исключают внезапное хрупкое разрушение. Отличительной особенностью одноосных волокнистых композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувстги-тельность к концентраторам напряжения.

Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления в полями напряжения.

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, диборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени с повышением температуры.

Основным недостатком композиционных материалов с одно- и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого недостатка лишены материалы с объемным армированием.

Дисперсно-упрочненные композиционные материалы. В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом, несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.


Высокая прочность достигается при размере частиц 10—500 нм при среднем расстоянии между ними 100—500 нм и равномерном распределении их в матрице. Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности.

Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов и редкоземельных металлов), нерастворяющихся в матричном металле, позволяет сохранить высокую прочность материала. В связи с этим такие материалы чаще применяют как жаропрочные. Дисперсно-упрочненные композиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.

Наиболее широко используют сплавы на основе алюминия — САП (спеченный алюминиевый порошок). САП состоит из алюминия и дисперсных чешуек А12О3. Частицы А12О3 эффективно тормозят движение дислокаций и тем самым повышают прочность сплава. Плотность этих материалов равна плотности алюминия, они не уступают ему по коррозионной стойкости и даже могут заменять титан и коррозионно-стойкие стали при работе в интервале температур 250-500 °С. По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность для сплавов САП-1 и САП-2 при 500 °С составляет 45—55 МПа.

Большие перспективы у никелевых дисперсно-упрочненных материалов. Широкое применение получили сплавы ВДУ-1 (никель, упрочненный двуокисью тория), ВДУ-2 (никель, упрочненный двуокисью гафния) и ВД-3 (матрица Ni + 20 % Cr, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. Дисперсно-упрочненные композиционные материалы, так же как волокнистые, стойки к разупрочнению с повышением температуры и длительности выдержки при данной температуре.

Области применения композиционных материалов не ограничены. Они применяются в авиации для высоконагруженных деталей самолетов (обшивки, лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора и турбины и т.д.), в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т. д., в горной промышленности (буровой инструмент, детали комбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т. д.) и в других областях народного хозяйства.

Применение композиционных материалов обеспечивает новый качественный скачок в увеличении мощности двигателей, энергетических и транспортных установок, уменьшении массы машин и приборов.


Композиционные материалы с неметаллической матрицей


Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиимидная. Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и др.), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.
Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественною соотношения и прочности связи между ними. Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.
Содержание упрочнителя в ориентированных материалах составляет 60—80%, в неориентированных (с дискретными волокнами и нитевидными кристаллами) 20—30%. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиге и сжатии и сопротивление усталостному разрушению.
По виду упрочнителя композиционные материалы классифицируют на стекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты.
В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Свойства получаются анизотропными. Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создавать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.
Применяется укладка упрочнителей из трех, четырех и более нитей.
Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях.

Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивление сдвигу по сравнению со слоистыми. Система из четырех нитей строится путем расположения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях. Однако создание четырехнаправленных материалов сложнее, чем трехнаправленных.

Композиционные материалы с неметаллической матрицей


Схемы армирования композиционных материалов: I - однонаправленная; II - двухнаправленная; III - трехнаправленная; IV - четырехнаправленная.

Укладка волокон (1 - прямоугольная, 2 - гексагональная, 3 - косоугольная, 4 - с искривленными волокнами, 5 - система из n нитей)


Кристаллизация металлов


Переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кристаллизацией. Образование новых кристаллов в твердом кристаллическом веществе называется вторичной кристаллизацией.
Процесс кристаллизации состоит из двух одновременно идущих процессов - зарождения и роста кристаллов. Кристаллы могут зарождаться самопроизвольно (самопроизвольная кристаллизация) или расти на имеющихся готовых центрах кристаллизации (несамопроизвольная кристаллизация).


Легированные стали


Маркировка легированных сталей состоит из сочетания букв и цифр, обозначающих ее химический состав. По ГОСТ 4543-71 принято обозначать хром - X, никель - Н, марганец - Г, кремний-С, молибден-М, вольфрам-В, титан-Т, ванадий-Ф, алюминий - Ю, медь-Д, ниобий - Б, бор-Р, кобальт-К. Цифра, стоящая после буквы, указывает на примерное содержание легирующего элемента в процентах. Если цифра отсутствует, то легирующего элемента меньше или около 1 %.
Две цифры в начале марки конструкционной легированной стали показывают содержание углерода в сотых долях процента. Например, сталь 20ХНЗА в среднем содержит 0,20%С, 1 % Сг и 3 % Ni. Буква А в конце марки означает, что сталь высококачественная. Особовысококачественные стали имеют в конце марки букву Ш.
Некоторые группы сталей содержат дополнительные обозначения: марки шарикоподшипниковых сталей начинаются с буквы Ш, электротехнических - с буквы Э, автоматных - с буквы А.
Влияние легирующих элементов на механические свойства сталей
Легирующие элементы вводят для повышения конструкционной прочности стали. Легированные стали производят качественными, высококачественными или особовысококачественными. Их применяют после закалки и отпуска, поскольку в отожженном состоянии они по механическим свойствам практически не отличаются от углеродистых.
Улучшение механических свойств обусловлено влиянием легирующих элементов на свойства феррита, дисперсность карбидной фазы, устойчивость мартенсита   при   отпуске,   прокаливаемость, размер зерна.
В конструкционных сталях феррит — основная структурная составляющая (не менее 90% по объему), во многом определяющая их свойства. Легирующие элементы, растворяясь в феррите, упрочняют его. Наиболее сильно повышают твердость медленно охлажденного  феррита кремний, марганец, никель, т. е. элементы, имеющие отличную от него кристаллическую решетку.
К важнейшим факторам, способствующим повышению конструкционной прочности, относятся снижение при легировании критической скорости закалки и увеличение прокаливаемости. Наиболее эффективно повышает прокаливаемость введение нескольких элементов : Cr + Mo, Cr + Ni, Cr + Ni + Mo и др. При комплексном легировании высокие механические свойства можно получить практически в сечении любого размера, поэтому комплексно-легированные стали применяют для крупных деталей сложной формы. Большинство легирующих элементов измельчает зерно, что способствует повышению работы развития трещины и снижению порога хладноломкости.
Для обеспечения высокой конструкционной прочности количество легирующих элементов в стали должно быть рациональным. После достижения необходимой прокаливаемости избыточное легирование (за исключением никеля) снижает трещиностойкость и облегчает хрупкое разрушение.


Литье по выплавляемым моделям


Модель изготавливается из парафина, стеарина, церезина и других материалов. В роли связующего выступает кварцевый песок совместно с этил силикатом.
Недостатком этого метода является то, что используемые формы однократного применения, у которых маленькая толщина оболочки, то есть детали получаются небольших размеров (до 10кг).


Литье под давлением


Литье под давлением является одним из самых прогрессивных методов получения отливок из цветных сплавов.
Сущность процесса литья под давлением состоит в том, что в стальную пресс-форму под большим давлением и с большой скоростью вводится расплавленный металл. При этом происходит мгновенное заполнение всей полости формы любой сложной конфигурации. Этот метод обеспечивает получение тонкостенных отливок с чистой поверхностью и точными размерами. Литье под давлением по сравнению с другими способами получения отливок имеет ряд преимуществ:
Высокая точность размеров отливки
В основном точность размеров отливок соответствует 5-му классу точности по ГОСТу 2689-54. Точность размеров отливки зависит от точности изготовления пресс-формы, состава сплава и его температуры, температуры формы и продолжительности выдержки металла под давлением.
Высокий класс чистоты поверхности отливок
Шероховатость поверхности отливок соответствует 6-му классу чистоты по ГОСТу 2789-59. Чистота поверхности отливок зависит в первую очередь от чистоты обработки пресс-формы (ухудшается по мере износа формы) и от применяемых сплавов. Шероховатость поверхности алюминиевых и магниевых отливок соответствует 5-8-му классу чистоты.
Минимальный объем механической обработки отливок
В сочетании с высокой точностью размеров и высокой чистотой поверхности  детали, отлитые под давлением, в большинстве случаев не требуют последующей механической    обработки.
Минимальный расход металла
Этим методом можно изготовлять тонкостенные отливки, получение которых другими методами литья невозможно. Изготовление отливок без припусков на механическую обработку приводит к минимальному расходу дорогостоящих цветных металлов.
Высокая прочность
Благодаря быстрому охлаждению отливки приобретают мелкозернистую структуру и повышенную прочность. Чем меньше толщина стенки отливки, тем больше ее прочность.
По сравнению с другими способами литье под давлением позволяет полностью механизировать и автоматизировать технологический процесс получения отливок и имеет самый короткий производственный цикл. Указанные преимущества литья под давлением приводят к значительному повышению производительности труда, улучшению условий труда и снижению себестоимости отливок в несколько раз.
Однако преимущества литья под давлением проявляются главным образом в крупносерийном и массовом производстве, когда очень быстро окупаются затраты на изготовление стальных пресс-форм. Стойкость пресс-форм зависит от применяемых сплавов и является одним из основных факторов, определяющих себестоимость деталей, получаемых литьем под давлением, и целесообразность применения этого способа.
Литье под давлением широко применяется в автомобилестроении, приборостроении, авиационной промышленности, в радиотехнике и электропромышленности, а также и в других отраслях машиностроения. Этому способствует создание все более мощных машин литья под давлением, позволяющих расширить ассортимент отливок, увеличить их габаритные размеры и сложность, а также повысить качество отливок.


Литье под низким давлением


Особенностью этого способа является заполнение формы расплавом снизу вверх непосредственно из печи и кристаллизации отливки под действием низкого давления.
На крышку герметичного металлического тигля, помещенного в электропечь, установлена металлическая форма. Через крышку тигля проходит один или два металлопровода, немного не доходящих до дна тигля. Верхняя часть металлопровода через литниковую втулку сообщается с коллектором литниковой системы. Внутренняя полость отливки оформляется песчаным стержнем, внутри которого находится трубчатый литой каркас. На металлическую форму установлен песчаный стержень  с фильтром из стружки. По трубопроводу в тигель подается сжатый воздух или инертный газ, который, оказывая давление на поверхность сплава, вытесняет его по металлопроводу вверх в литниковую систему и через нее в полость формы.
Сначала расплав подается медленно, затем, достигнув электроконтакта в нижней части формы, включает дополнительное давление пневмосистемы и быстро заполняет полость формы. Достигнув второго электроконтакта, расплав включает прибор, прекращающий дальнейшее повышение давления пневмосистемы. Давление поддерживается на постоянном уровне до полного затвердения отливки. Стружковый фильтр пропускает воздух, вытесняемый из формы поступающим расплавом, но препятствует выходу металла, обеспечивая плавное торможение потока в конце заполнения полости формы.
После затвердевания отливки давление в тигле автоматически сбрасывается, форма раскрывается и отливка извлекается.
Автоматическое управление скоростью заполнения формы металлом впервые осуществлено при разработке машин для литья под низким давлением. Литье под низким давлением применяется при изготовлении сложных крупногабаритных тонкостенных деталей из алюминиевых и магниевых сплавов.


Литье в кокиль


Повышенные механические свойства и плотность
Вследствие большой скорости охлаждения жидкого металла в кокиле образуется мелкокристаллическая структура отливок, что способствует повышению их плотности и механических свойств.
Повышенная точность размеров и чистота поверхности отливок
Благодаря более точным и стабильным размерам металлических форм и более чистой их поверхности повышается точность размеров и чистота поверхности отливок. Точность отливок из алюминиевых и магниевых сплавов при литье в кокиль на два класса выше, чем при литье в песчаные формы.
Меньшие припуски на механическую обработку
Вследствие большей точности и чистоты поверхности отливок при литье в кокиль припуски на механическую обработку отливок на 40—50% меньше, чем при литье в песчаные формы.
Экономия формовочных и вспомогательных материалов
При литье в кокиль алюминиевых и магниевых сплавов применяют незначительную часть песчаных стержней, на которые расходуется меньше формовочных и вспомогательных материалов, чем при литье в песчаные формы.
По мере роста удельного веса литья в кокиль в общем производстве отливок расход формовочных и вспомогательных материалов резко снижается. Соответственно уменьшаются грузопоток и затраты на приготовление и транспортировку этих материалов.
Снижение брака
Более стабильные условия технологического процесса литья в кокиль по сравнению с литьем в песчаные формы дают возможность снизить брак.
Снижение расхода металла
Получение более точных отливок с меньшими припусками на механическую обработку, уменьшение веса литниковой системы, а также увеличение с 20 до 30% использования отходов в шихте при литье в кокиль цветных сплавов позволяет уменьшить черновой вес отливок и снизить расход свежих чушковых материалов. Экономия свежих металлов при литье в кокиль достигает на отдельных отливках от 37 до 75%.
Снижение трудоемкости
При литье в кокиль сокращается производственный цикл изготовления отливок, так как исключаются операции приготовления формовочных смесей и формовки, уменьшается объем изготовления и сушки песчаных стержней, плавки металла и отделки отливок. В результате значительно снижается трудоемкость производства отливок.
Снижение себестоимости
Перечисленные выше преимущества литья в кокиль приводят к снижению себестоимости отливок из цветных сплавов.
Кроме того, при литье в кокиль облегчается очистка и обрубка литья, значительно уменьшается число применяемого оборудования (формовочных и стержневых машин, очистного и другого технологического и транспортного оборудования). Увеличивается съем литья с квадратного метра производственной площади и резко улучшаются санитарно-технические условия труда.


Литье в оболочковые формы


Преимущества этого метода заключаются в высокой точности отлива, также получается низкая шероховатость поверхности и малый расход формовочного материала.
Недостатками этого метода являются ограничения по массе у детали (до 100кг), также формы можно использовать малое число раз (2÷3 раза), что способствует низкой производительности.


Литье в землю


Недостатки этого метода заключаются в том, что поверхность детали получается шероховатой, охлаждение детали происходит очень медленно, то есть производительность будет низкой, также такой детали присущи низкие механические свойства, так как кристаллизация происходит длительное время и образуется крупнозернистая структура у детали.


Литье выжиманием


Для получения крупногабаритных тонкостенных деталей панельного типа изобрели новый способ литья в металлические формы со сближающимися стенками. Разработанный по этому принципу литейный процесс назван «литье выжиманием».
Залитый в нижнюю часть раскрытой формы (металлоприемник) жидкий сплав по мере сближения стенок закрывающейся формы поднимается и заполняет ее. При этом на стенках формы идет наращивание кристаллизующегося сплава, удаление избытка расплава наружу и соединение в одно целое закристаллизовавшегося сплава.
Литье выжиманием имеет следующие две особенности, определяющие его сущность как метода получения тонкостенных деталей с большой поверхностью:
1. Процесс заполнения формы расплавом происходит сплошным потоком, сечение которого во много раз превосходит толщину стенки отливки. В результате намного снижаются гидравлические потери при заполнении полости формы и создаются условия замедленной кристаллизации сплава.
2. Формообразование отливки происходит в процессе сжимания потока жидкого сплава в два этапа. Сначала сплав кристаллизуется на стенках формы в виде корки с постепенным наращиванием толщины слоя за счет расплава, непрерывно подаваемого из металлоприемника в зоны кристаллизации. Затем корки соединяются в цельную отливку с одновременным удалением избытка жидкого металла вместе с находящимися в нем загрязнениями.


Медные сплавы


Свойства меди. Медь металл красновато-розового цвета; кристаллическая ГЦК решетка, полиморфных превращений нет. Медь менее тугоплавка, чем железо, но имеет большую плотность. Медь обладает хорошей технологичностью. Она прокатывается в тонкие листы, ленту. Из меди получают тонкую проволоку, медь легко полируется, хорошо паяется и сваривается. Медь характеризуется высокими теплопроводностью и электропроводимостью, пластичностью и коррозионной стойкостью.
Примеси снижают все эти свойства. По ГОСТ 859-78 в зависимости от содержания примесей различают следующие марки меди: М00 (99,99%Cu), М0 (99,97%Cu), M1 (99,9%Cu), М2 (99,7%Cu), МЗ (99,5%Cu). Наиболее часто встречающиеся в меди примеси подразделяют на три группы.
1.  Растворимые в меди элементы Al, Fe, Ni, Zn, Ag повышают прочность и твердость меди  и используются для легирования сплавов на медной основе.
2. Нерастворимые элементы РЬ и Bi ухудшают механические свойства меди и однофазных сплавов на ее основе. Образуя легкоплавкие эвтектики, располагающиеся по границам зерен основной фазы, они вызывают красноломкость. Причем вредное влияние висмута обнаруживается при его содержании в тысячных долях процента, поскольку      его      растворимость      ограничивается 0,001%. Вредное влияние свинца также проявляется     при     малых     его     содержаниях (< 0,04 %).  Висмут,  будучи  хрупким  металлом, охрупчивает медь и ее сплавы. Свинец, обладая  низкой  прочностью,  снижает   прочность медных  сплавов,  однако  вследствие хорошей    пластичности    не    вызывает    их охрупчивания. Кроме того, свинец улучшает антифрикционные  свойства  и  обрабатываемость  резанием   медных   сплавов,   поэтому применяется для легирования двухфазных сплавов меди.
3. Нерастворимые примеси O, S, Se, Tl присутствуют в меди и ее сплавах в виде промежуточных фаз, которые образуют с медью эвтектики с высокой температурой плавления и не вызывают красноломкости.
Кислород при отжиге меди в водороде вызывает «водородную болезнь», которая может привести к разруше нию металла при обработке давлением или эксплуатации готовых деталей.

Механические свойства меди в большой степени зависят от ее состояния и в меньшей от содержания примесей. Высокая пластичность чистой отожженной меди объясняется большим количеством плоскостей скольжения. Холодная пластическая деформация (достигающая 90% и более) увеличивает прочность, твердость, предел упругости меди, но снижает пластичность и электрическую проводимость. При пластической деформации возникает текстура, вызывающая анизотропию механических свойств меди. По электропроводимости и теплопроводности медь занимает второе место после серебра. Она применяется для проводников электрического тока и различных теплообменников, водоохлаждаемых изложниц, поддонов, кристаллизаторов.

Недостатки меди: высокая плотность, плохая обрабатываемость резанием и низкая жидкотекучесть.

Общая характеристика и классификация медных сплавов. Сохраняя положительные качества меди (высокие теплопроводность и электропроводимость, коррозионную стойкость и др.), медные сплавы обладают хорошими механическими, технологическими и антифрикционными свойствами.

Для легирования медных сплавов в основном используют элементы, растворимые в Cu, Zn, Sn, Al, Be, Si, Mn, Ni. Повышая прочность медных сплавов, легирующие элементы практически не снижают, а некоторые из них (Zn, Sn, Al) увеличивают пластичность. Высокая пластичность - отличительная особенность медных сплавов. По прочности медные сплавы уступают сталям.

По технологическим свойствам медные сплавы подразделяют на деформируемые (обрабатываемые давлением) и литейные; по способности упрочняться с помощью термической обработки - на упрочняемые и неупрочняемые. По химическому составу медные сплавы подразделяют на две основные группы: латуни и бронзы.

Латунями называются сплавы меди с цинком.


Они бывают двойными (простые) и многокомпонентными (легированные). Двойные деформируемые латуни маркируются буквой Л (латунь) и цифрой, показывающей среднее содержание меди в процентах. Латуни с содержанием 90% Cu и более называются томпаком (Л96), при 80 - 85%Cu — полутомпаком (Л80). В марках легированных латуней кроме цифры, показывающей содержание меди, даются буквы и цифры, обозначающие название и количество в процентах легирующих элементов. Алюминий в медных сплавах обозначают буквой А, никель-Н, олово-О, свинец-С, фосфор-Ф, железо-Ж, кремний-К, марганец-Мц, бериллий-Б, цинк-Ц. Например, ЛАН59-3-2 содержит 59%Cu, 3% Аl, 2% Ni. В марках литейных латуней указывается содержание цинка, а количество каждого легирующего элемента ставится непосредственно за буквой, обозначающей его название. Например, ЛЦ40МцЗА содержит 40% Zn, 3% Mn, 1% Al.

Бронзами называются сплавы меди со всеми элементами кроме цинка. Название бронзам дают по основным элементам. Так, их подразделяют на оловянные, алюминиевые, бериллиевые, кремнистые и др. В бронзах в качестве легирующей добавки может присутствовать цинк. Деформируемые бронзы маркируют буквами Бр (бронза), за которыми следуют буквы, а затем цифры, обозначающие название и содержание в процентах легирующих элементов. Например, БрОЦС4-4-2,5 содержит 4% Sn, 4 % Zn, 2,5 % Pb. Сплавы меди с никелем имеют названия: мельхиоры, куниали, нейзильберы. В марках литейных бронз содержание каждого легирующего элемента ставится сразу после буквы, обозначающей его название. Например, БрО6Ц6СЗ содержит 6% Sn, 6% Zn, 3% Pb.

Свойства    промышленных    латуней,    обрабатываемых    давлением



  Латунь

Массовая доля, %



?0,2

?,%

HB

Cu

Прочих элементов

MПа

Л90

Л68

Л63

Л 60

ЛА77-2

ЛАН59-3-2

ЛН65-5 ЛЖМц59- 1-1

ЛМц58-2

ЛО70-1

ЛС59-1

ЛК80-3

88-91

67-70

62-65

59-62

76-79

57-60

64-67

57-60

57-60

69-71

57-60

79-81

-

-

-

-

1,75-2,5 А1

2,5-3,5 А1

2-3 Ni

5-6,5 Ni

0,1-0,4 Al

0,6-1,2 Fe

0,5-0,8 Mn

0,3-0,7 Sn

1-2 Mn

1-1,5 Sn

0,8-1,9 Pb

2,5-4 Si

260

320

330

380

400

380

400

450

400

350

400

300

120

91

110

160

140

300

170

170

160

100

140

200

45

55

50

25

55

50

65

50

40

60

45

58

530

550

560

770

600

750

600

880

850

600

900

1000



Механические свойства материалов


Из всех свойств, которыми обладают твердые тела, наиболее характерными являются механические свойства — прочность, твердость, пластичность, износостойкость и др. Именно благодаря этим свойствам твердые тела получили столь широкое практическое применение в качестве конструкционных, строительных, электротехнических, магнитных и других материалов, без которых немыслимо развитие материального производства. Рассмотрим некоторые из этих свойств.


Металлопласты


Полимерные материалы (пластмассы), наполненные металлическим заполнителем в виде порошков, волокон, ткани, называются металлопластами.
Металл сообщает таким композициям ряд специальных свойств — магнитных (при наполнении железом, пермаллоем и т. д.), повышенную электро- и теплопроводность, поглощение и отражение радиоволн, повышенную демпфирующую способность и т. д.
Полимеры, наполненные магнитными порошками, называются магнитодиэлектриками.


Нагрев для снятия остаточных напряжений


Многие технологические воздействия на обрабатываемые детали сопровождаются возникновением в них остаточных напряжений, которые уравновешиваются в объеме детали. Значительные остаточные напряжения возникают в отливках и полуфабрикатах, неравномерно охлаждающихся после проката или ковки, в холоднодеформированных полуфабрикатах или заготовках, в прутках в процессе правки, в сварных соединениях, при закалке и т. п.
Остаточные напряжения, возникшие в указанных случаях, чаще всего нежелательны. Они могут вызвать деформацию деталей при обработке резанием или в процессе эксплуатации, а, суммируясь с напряжениями от внешних нагрузок, привести к преждевременному разрушению или короблению конструкции; увеличивая запас упругой энергии, остаточные напряжения повышают вероятность хрупкого разрушения. Во многих сплавах они вызывают склонность к растрескиванию в присутствии коррозионно-активной среды. По величине остаточные напряжения могут достигать предела текучести.
Для уменьшения остаточных напряжений изделия нагревают. С повышением температуры предел текучести понижается, поэтому остаточные напряжения вызывают пластическую деформацию и снижаются до уровня предела текучести металла при температуре нагрева.
В стальных и чугунных деталях значительное снижение остаточных напряжений происходит в процессе выдержки при температуре 450 °С; после выдержки при температуре 600 °С напряжения понижаются до очень низких значений. Время выдержки устанавливается от нескольких до десятков часов и зависит от массы изделия.
В сплавах на основе меди и алюминия существенное уменьшение остаточных напряжений происходит при меньших температурах нагрева. Например, в холоднодеформированных латунных полуфабрикатах остаточные напряжения практически полностью снимаются в процессе отжига при 250-300°С
По окончании выдержки при заданной температуре изделия медленно охлаждают, чтобы предотвратить возникновение новых напряжений. Допустимая скорость охлаждения зависит от массы изделия, его формы и теплопроводности материала; она обычно лежит в пределах 20-200 °С/ч.


Назначение и виды химико-термической обработки


Химико-термической обработкой называется процесс поверхностного насыщения стали различными элементами путем их диффузии из внешней среды при высокой температуре. Цель химико-термической обработки — поверхностное упрочнение металлов и сплавов и повышение их стойкости против воздействия внешних агрессивных сред при нормальной и повышенных температурах.
Процессы химико-термической обработки состоят из трех стадий:
- диссоциации, которая заключается в распаде молекул и образовании активных атомов диффундирующего элемента;
- адсорбции, т. е. контактирования атомов диффундирующего элемента с поверхностью стального изделия и образования химических связей с атомами металла;
- диффузии, т. е. проникновения насыщающего элемента в глубь металла.
Назначение и виды химико-термической обработки
Скорость диффузии (коэффициент диффузии) при проникновении диффундирующих атомов в решетку растворителя будет выше, если при взаимодействии образуются твердые растворы внедрения, и значительно ниже, если образуются твердые растворы замещения.
Концентрация диффундирующего элемента на поверхности зависит от притока атомов этого элемента к поверхности и от скорости диффузионных процессов, т. е. отвода этих атомов в глубь металла. Чем выше концентрация диффундирующего элемента на поверхности детали, тем больше толщина слоя. Чем выше температура процесса, тем больше скорость диффузии атомов, а, следовательно, возрастает толщина диффузионного слоя.
Границы зерен являются участками, где диффузионные процессы облегчаются из-за наличия большого числа дефектов кристаллического строения. Если растворимость диффундирующего элемента в металле мала, то часто наблюдается преимущественная диффузия по границам зерен. При значительной растворимости диффундирующего элемента в металле роль пограничных слоев уменьшается. В момент фазовых превращений диффузия протекает быстрее.
Назначение и виды химико-термической обработки



Назначение и виды химико-термической обработки
                                                                - толщина диффузионного слоя


Неорганические материалы


К неорганическим полимерным материалам относятся минеральное стекло, ситаллы, керамика и др. Этим материалам присущи негорючесть, высокая стойкость к нагреву, химическая стойкость, неподверженность старению, большая твердость, хорошая сопротивляемость сжимающим нагрузкам. Однако они обладают повышенной хрупкостью, плохо переносят резкую смену температур, слабо сопротивляются растягивающим и изгибающим усилиями имеют большую плотность по сравнению с органическими полимерными материалами.
Основой неорганических материалов являются главным образом оксиды и бескислородные соединения металлов. Поскольку большинство неорганических материалов содержит различные соединения кремния с другими элементами, эти материалы объединяют общим названием силикатные. В настоящее время применяют не только соединения кремния, но и чистые оксиды алюминия, магния, циркония  и другие, обладающие более ценными техническими свойствами, чем обычные силикатные материалы.
В группу неорганических полимеров входит также графит. Неметаллические материалы подразделяют на графит, неорганическое стекло, стеклокристаллические материалы — ситаллы и керамику.


Неорганическое стекло


Неорганическое стекло следует рассматривать как особого вида затвердевший раствор — сложный расплав высокой вязкости кислотных и основных оксидов.
Стеклообразное состояние является разновидностью аморфного состояния вещества. При переходе стекла из расплавленного жидкого состояния в твердое аморфное в процессе быстрого охлаждения и нарастания вязкости беспорядочная структура, свойственная жидкому состоянию, как бы «замораживается». В связи с этим неорганические стекла характеризуются неупорядоченностью и неоднородностью внутреннего строения.
Стеклообразующий каркас стекла представляет собой неправильную пространственную сетку, образованную кремнекислородными тетраэдрами SiO4.
В состав неорганических стекол входят стеклообразующие оксиды кремния, бора, фосфора, германия, мышьяка, образующие структурную сетку и модифицирующие оксиды натрия, калия, лития, кальция, магния, бария, изменяющие физико-химические свойства стекломассы. Кроме того, в состав стекла вводят оксиды алюминия, железа, свинца, титана, бериллия и др., которые самостоятельно не образуют структурный каркас, но могут частично замещать стеклообразующие оксиды и этим сообщать стеклу нужные технические характеристики. В связи с этим промышленные стекла являются сложными многокомпонентными системами.
Стекла классифицируют по стеклообразующему веществу, по содержанию модификаторов и по назначению.
В зависимости от химической природы стеклообразующего вещества стекла подразделяют на силикатные (SiO2), алюмосиликатные (А12О3— SiO2), боросиликатные (В2О3—SiO2), алюмоборосиликатные (А12О3—В2О3—SiO2), алюмофосфатные (А12О3—Р2О5) и др. По содержанию модификаторов стекла бывают щелочными (содержащими оксиды Na2O, K2O), бесщелочными и кварцевыми. По назначению все стекла подразделяют на технические (оптические, светотехнические, электротехнические, химико-лабораторные, приборные, трубные); строительные (оконные, витринные, армированные, стеклоблоки) и бытовые (стеклотара; посудные, бытовые зеркала и т.
п.).

Технические стекла в большинстве относятся к алюмоборо-силикатной группе и отличаются разнообразием входящих оксидов. Стекла выпускаются промышленностью в виде готовых изделий, заготовок или отдельных деталей.

При нагреве стекло плавится в некото ром температурном интервале, который зависит от состава. Свойства стекла, как и всех аморфных тел, изотропны. Плотность стекла колеблется от 2200 до 6500 кг/м8 (для стекла с оксидами свинца или бария она может достигать 8000 кг/м3).

Механические свойства стекла характеризуются высоким сопротивлением сжатию (500—2000 МПа), низким пределом прочности при растяжении (30-90 МПа) и изгибе        (50-150 МПа). Модуль упругости высокий (45—100 МПа).

Важнейшими специфическими свойствами стекол являются их оптические свойства: светопрозрачность, отражение, рассеяние, поглощение и преломление света. Обычное неокрашенное листовое стекло пропускает до 90 %, отражает примерно 8 % и поглощает около 1 % видимого и частично инфракрасного света; ультрафиолетовое излучение поглощается почти полностью. Кварцевое стекло является прозрачным для ультрафиолетового излучения. Коэффициент преломления стекол составляет 1,47—1,96.

Термостойкость стекла характеризует его долговечность в условиях разных изменений температуры. Она определяется разностью температур, которую стекло может выдержать без разрушения при его резком охлаждении в воде. Для большинства видов стекол термостойкость колеблется от 90 до 170°С, а для кварцевого стекла она составляет            800-1000 °С. Химическая стойкость стекол зависит от образующих их компонентов: оксиды SiO2, ZrO2, TiO2, В2О6, А12Оа, CaO, MgO, ZnO обеспечивают высокую химическую стойкость, а оксиды Li2O, Na2O, K2O и BaO, наоборот, способствуют химической коррозии стекла. Механическая прочность и термостойкость стекла могут быть повышены путем закалки и термического упрочнения.

Закалка заключается в нагреве стекла и последующем быстром и равномерном охлаждении в потоке воздуха или в масле.


При этом сопротивление статическим нагрузкам увеличивается в 3—6 раз, ударная вязкость в 5— 7 раз. При закалке повышается также термостойкость стекла.

Термохимическое упрочнение основано на глубоком изменении структуры стекла и свойств его поверхности. Стекло подвергается закалке в подогретых кремнийорганических жидкостях, в результате чего на поверхности материала образуются полимерные пленки; этим создается дополнительное, по сравнению с результатом обычной закалки, упрочнение. Повышение прочности и термостойкости можно получить травлением закаленного стекла плавиковой кислотой, в результате чего удаляются поверхностные дефекты, снижающие его качество.

Силикатные триплексы представляют собой два листа закаленного стекла (толщиной 2—3 мм), склеенные прозрачной эластичной полимерной пленкой. При разрушении триплекса образовавшиеся неострые осколки удерживаются на полимерной пленке. Триплексы бывают плоскими и гнутыми.

Термопан — трехслойное стекло, состоящее из двух стекол и воздушного промежутка между ними. Эта воздушная прослойка обеспечивает теплоизоляцию.

Применение технических стекол. Для остекления транспортных средств используют преимущественно триплексы, термопан и закаленные стекла.

Оптические стекла, применяемые в оптических приборах и инструментах, подразделяют на кроны, отличающиеся малым преломлением, и флинты — с высоким содержанием оксида свинца и большими значениями коэффициента преломления.

Остекление кабин и помещений, где находятся пульты управления мартеновских и дуговых печей, прокатных станов и подъемных кранов в литейных цехах, выполняется стеклами, содержащими оксиды железа и ванадия, которые поглощают около 70 % инфракрасного излучения в интервале длин волн 0,7—3 мкм.

Кварцевое стекло вследствие высокой термической и химической стойкости применяют для изготовления тиглей, чаш, труб, наконечников, лабораторной посуды. Близкое по свойствам к кварцевому стеклу, но более технологичное кварцоидное (кремнеземное) стекло используют для электроколб, форм для точного литья и т.д.


Неполярные и слабополярные термопласты


Неполярными или слабополярными являются полимеры с симметричной структурой молекул или со слабополярными связями, например С—Н.
Полиэтилен (продукт полимеризации этилена) стал одним из самых распространенных пластиков. Это объясняется тем, что в нем высокие электроизоляционные характеристики сочетаются с достаточной механической прочностью, стойкостью к нагреву и низким температурам, действию влаги, кислот и щелочей, хорошей перерабатываемостью и сравнительно низкой стоимостью ввиду доступности сырья.
Основными недостатками полиэтилена является склонность к старению (окислению), особенно при нагреве, и горючесть. Первый недостаток устраняется присадками антистарителей (ароматические амины, сажа и др.). Для уменьшения горючести вводят в состав массы трехокись сурьмы или совмещают полимер с хлорированными углеводородами.
Полипропилен. Его недостатком является более высокая чувствительность к действию кислорода в атмосферных условиях. Он быстрее стареет. Во избежание старения его стабилизируют аминами и газовой сажей.
Полистирол. Являясь продуктом полимеризации стирола, представляет собой бесцветную прозрачную смолу с малым удельным весом и высокими электроизоляционными свойствами. При нормальной температуре полистирол прочнее полиэтилена ?в=50-60 МН/м2, но отличается малой нагревостойкостью (~75-80°С) и склонен к растрескиванию. Это основные недостатки полистирола.
Полистирол стоек к действию кислот (кроме азотной), щелочей и озона. Он мало изменяет свои характеристики под действием влаги, но на открытом воздухе (особенно под влиянием света) постепенно желтеет и легко растрескивается. Полистирол обладает высокой прозрачностью (до 95%) и высоким коэффициентом преломления (n=1,60), что позволяет использовать его в качестве оптических стекол. Он, в частности, применяется для остекления строевых огней.
Полистирол широко применяют для изготовления высокочастотных пластмасс, пленок, лаков и т. д. Разнообразно применение сополимеров, содержащих полистирол.

Политетрафторэтилен (фторопластом-4)  представляет собой молочно-белый, жирный на ощупь продукт. Многие отличительные свойства фторопластов связаны с высокой энергией связи С—F, равной 450 кДж/моль.

Ввиду высокой энергии этой связи фторопласт имеет неразветвленные линейные молекулы. Необлученный фторопласт является одним из самых стойких веществ. На него практически не действуют ни кислоты, ни щелочи, ни органические вещества. Он не горюч, не смачивается водой и отличается исключительно высокой влагостойкостью. Он разрушается только под действием жидких щелочных металлов и растворяется при высокой температуре (~270°С) в перфторированных керосинах. Электроизоляционные качества фторопласта-4 очень высоки и мало изменяются при изменении температуры и рабочей частоты.

Недостатками фторопласта-4 являются холодная текучесть, увеличивающаяся при механических нагрузках, и низкая короностойкость. При высокой температуре, начиная с 250°С, происходит термическая деструкция фторопласта-4, которая протекает особенно интенсивно начиная с 400° С. Некоторые продукты деструкции весьма токсичны.


Непрерывное литье


Достоинства этого метода в том, что допустима неограниченная длина отливки, также осуществима высокая производительность.
Недостатки этого метода – форма изделий представляет собой деталь с однородным сечением.


Несамопроизвольная кристаллизация


В реальных условиях процессы кристаллизации и характер образующейся структуры в значительной мере зависят от имеющихся готовых центров кристаллизации. Такими центрами, как правило, являются тугоплавкие частицы неметаллических включений, оксидов, интерметаллических соединений, образуемых примесями. К началу кристаллизации центры находятся в жидком металле в виде твердых включений. При кристаллизации атомы металла откладываются на активированной поверхности примеси, как на готовом зародыше. Такая кристаллизация называется несамопроизвольной или гетерогенной. При несамопроизвольной кристаллизации роль зародышей могут играть и стенки формы.
Наличие готовых центров кристаллизации приводит к уменьшению размера кристаллов при затвердевании. Эффект измельчения структуры значительно увеличивается при соблюдении структурного и размерного соответствия примесной фазы с основным металлом, которое способствует сопряжению их кристаллических решеток.
В жидком металле могут присутствовать и растворенные примеси, которые также вызывают измельчение структуры. Адсорбируясь на поверхности зарождающихся кристаллов, они уменьшают поверхностное натяжение на границе раздела жидкость - твердая фаза и линейную скорость роста кристаллов. Это способствует уменьшению Акр и появлению новых зародышей, способных к росту. Примеси, понижающие поверхностное натяжение, называют поверхностно-активными.


Общие требования, предъявляемые к конструкционным материалам


Конструкционными называют материалы, предназначенные для изготовления деталей машин, приборов, инженерных конструкций, подвергающиеся механическим нагрузкам. Делали машин и приборов характеризуются большим разнообразием форм, размеров, условий эксплуатации. Они работают при статических, циклических и ударных нагрузках, при низких и высоких температурах, в контакте с различными средами. Эти факторы определяют требования к конструкционным материалам, основные из которых эксплуатационные, технологические и экономические.
Эксплуатационные требования имеют первостепенное значение. Для того, чтобы обеспечить работоспособность конкретных машин и приборов, конструкционный материал должен иметь высокую конструкционную прочность.
Конструкционной прочностью называется комплекс механических свойств, обеспечивающих надежную и длительную работу материала в условиях эксплуатации.
Механические свойства, определяющие конструкционную прочность и выбор конструкционного материала, рассмотрены ниже. Требуемые характеристики механических свойств материала для конкретного изделия зависят не только от силовых факторов, но и воздействия на него рабочей среды и температуры.
Среда - жидкая, газообразная, ионизированная, радиационная, в которой работает материал, оказывает существенное и преимущественно отрицательное влияние на его механические свойству, снижая работоспособность деталей. В частности, рабочая среда может вызывать повреждение поверхности вследствие коррозионного растрескивания, окисления и образования окалины, изменение химического состава поверхностного слоя в результате насыщения нежелательными элементами. Кроме того, возможны разбухание и местное разрушение материала в результате ионизационного и радиационного облучения. Для того чтобы противостоять рабочей среде, материал должен обладать не только механическими, но и определенными физико-химическими свойствами: стойкостью к электрохимической коррозии, жаростойкостью, радиационной стойкостью, влагостойкостью, способностью работать в условиях вакуума и др.

В некоторых случаях важно также требование определенных магнитных, электрических, тепловых свойств, высокой стабильности размеров деталей (особенно высокоточных деталей приборов).

Технологические требования направлены на обеспечение наименьшей трудоемкости изготовления деталей и конструкций. Технологичность материала характеризуют возможные методы его обработки. Она оценивается обрабатываемостью резанием, давлением, свариваемостью, способностью к литью, а также прокаливаемостью, склонностью к деформации и короблению при термической обработке. Технологичность материала имеет важное значение, так как от нее зависят производительность и качество изготовления деталей.

Экономические требования сводятся к тому, чтобы материал имел невысокую стоимость и был доступным. Стали и сплавы по возможности должны содержать минимальное количество легирующих элементов. Использование материалов, содержащих легирующие элементы, должно быть обосновано повышением эксплуатационных свойств деталей. Экономические требования, так же как и технологические, приобретают особое значение при массовом масштабе производства.

Таким образом, качественный конструкционный материал должен удовлетворять комплексу требований.


Определения и классификация


Термической обработкой называют технологические процессы, состоящие из нагрева и охлаждения металлических изделий с целью изменения их структуры и свойств. Термической обработке подвергают слитки, отливки, полуфабрикаты, сварные соединения, детали машин, инструменты. Основные виды термической обработки - отжиг, закалка, отпуск и старение. Каждый из указанных видов имеет несколько разновидностей.
Отжиг - термическая обработка, в результате которой металлы или сплавы приобретают структуру, близкую к равновесной: отжиг вызывает разупрочнение металлов и сплавов, сопровождающееся повышением пластичности и снятием остаточных напряжений. Температура нагрева при отжиге зависит от состава сплава и конкретной разновидности отжига; скорость охлаждения с температуры отжига обычно невелика, она лежит в пределах 30-200°С/ч.
Закалка - термическая обработка, в результате которой в сплавах образуется неравновесная структура. Неравновесные структуры при термической обработке можно получить только в том случае, когда в сплавах имеются превращения в твердом состоянии: переменная растворимость, полиморфные превращения твердых растворов, распад высокотемпературного твердого раствора по эвтектоидной реакции и др. Для получения неравновесной структуры сплав нагревают выше температуры фазового превращения в твердом состоянии, после чего быстро охлаждают, чтобы предотвратить равновесное превращение при охлаждении. Для охлаждения используют различные жидкости, отраженные в таблице:
Охлаждающая среда
Температура
охлаждающей среды, оС
Вода
20 - 80
10%-ный раствор   в воде:    NaCl,                  NaOH
20
Масло минеральное
20-200
Конструкционные и инструментальные сплавы закаливают для упрочнения. Сильно упрочняются при закалке сплавы, претерпевающие в равновесных условиях эвтектоидное превращение. Прочность возрастает либо вследствие мартенситного фазового перехода, либо вследствие понижения температуры эвтектоидной реакции, приводящих к измельчению зерен, образующих эвтектоидную смесь.
Если в результате закалки при температуре 20-25°С фиксируется состояние высокотемпературного твердого раствора, значительного упрочнения сплава непосредственно после закалки не происходит; основное упрочнение создается при повторном низкотемпературном нагреве или во время выдержки при температуре 20-25°С.

Отпуск и старение — термическая обработка, в результате которой в предварительно закаленных сплавах происходят фазовые превращения, приближающие их структуру к равновесной.

Сочетание закалки с отпуском или старением практически всегда предполагает получение более высокого уровня свойств (твердости, характеристик прочности, коэрцитивной силы, удельного электрического сопротивления и др.) по сравнению с отожженным состоянием.

В большинстве сплавов после закалки получают пересыщенный твердый раствор. В этом случае основной процесс, происходящий при отпуске или старении,— распад пересыщенного твердого раствора. Температуру и выдержку выбирают таким образом, чтобы равновесное состояние сплава при обработке не достигалось, как это происходит при отжиге. Скорость охлаждения с температуры отпуска или старения за редким исключением не влияет на структуру и свойства сплавов.

Термин “отпуск” используют обычно применительно к сталям и другим сплавам, испытывающим при закалке полиморфное превращение. Термин “старение”-применительно к сплавам, не претерпевающим при закалке полиморфного превращения.

Любой технологический процесс термической обработки состоит из трех основных этапов: нагрев, изотермическая выдержка и охлаждение. Нагрев, а иногда и весь процесс термической обработки (отжиг) проводят в термических печах.

Термическую обработку применяют, например, для уменьшения остаточных напряжений в изделиях, рекристаллизации пластически деформированных полуфабрикатов, уменьшения внутрикристаллической ликвации в слитках или отливках.Соответствующие операции термической обработки являются разновидностями отжига: отжиг (нагрев) для уменьшения напряжений, рекристаллизационный отжиг, диффузионный отжиг (гомогенизация). Состояние сплавов после теплового воздействия становится более равновесным.


Органические полимеры


Органическими называют обширный класс веществ, содержащих в своей основе углерод. Кроме углерода в этих веществах содержится обычно водород, кислород, азот, сера, фосфор. Соединения, в которых содержатся также и другие элементы, называют элементоорганическими. Органические вещества обладают молекулярной структурой, т. е. состоят из отдельных молекул, внутри которых атомы связаны преимущественно весьма прочными ковалентными связями. Между собой молекулы связаны сравнительно слабыми поляризационными силами.
Большинство органических веществ не содержит свободных электронов и ионов, поэтому они являются диэлектриками. Так как силы поляризационной связи между отдельными молекулами невелики, то органические вещества с малой молекулярной массой являются при обычной температуре газами или жидкостями. Вещества с более высокой молекулярной массой являются твердыми уже при обычной температуре.
Ввиду поляризационного характера связи, обусловливающего большие расстояния между молекулами, и малого атомного веса элементов, образующих органические соединения, они отличаются невысоким удельным весом. Поляризационный характер связи определяет также невысокую механическую прочность. Органические вещества сравнительно легкоплавки и за некоторыми исключениями отличаются низкой нагревостойкостью. Подавляющее большинство из них горючи. Легкое горение органических веществ объясняется тем, что связи атомов углерода между собой и с водородом в молекулах органических веществ значительно менее прочным, чем связи углерода и водорода с кислородом. Поэтому при реакциях окисления выделяется большое количество тепла, которое разлагает органические вещества перед горением, облегчая их реакцию с кислородом. Горению органических веществ благоприятствует и то, что конечные продукты их окисления — газы легко удаляются от очага горения и не препятствуют его развитию.
Легкая горючесть большинства органических материалов является их существенным недостатком.
Однако в последнее время получен ряд плохо горючих или негорючих элементоорганических соединений. Так, замена водорода органических веществ фтором практически полностью препятствует их воспламенению или горению. Хлор, вводимый в больших количествах в органические вещества, также препятствует их горению и гасит пламя, обрывая развитие цепных реакций горения. Существенно затрудняется горючесть и при образовании кремнийорганических соединений. Различия в свойствах отдельных органических веществ объясняются различиями в их составе и строении.

Особенно широкое распространение в качестве электроизоляционных материалов получили полимеры.

По происхождению полимеры могут быть природными материалами (целлюлоза, натуральный каучук, янтарь и др.) или синтетическими продуктами (бакелит, полистирол, полиэтилен и др.). Они приобретают все возрастающее значение в технике и быту благодаря удачному сочетанию многих важных качеств, особенно у новых синтетических высокополимеров. Часто они отличаются высокими электроизоляционными свойствами в широком диапазоне рабочих напряжений и частот (вплоть до СВЧ), при высокой влажности окружающей среды и в широком интервале рабочих температур. Они обладают также хорошими тепло- и звукоизоляционными свойствами. Как правило, не подвержены коррозии, гниению и во многих случаях отличаются высокой химической стойкостью.

Ввиду малой плотности, сочетающейся с достаточной прочностью, на основе полимеров можно получить материалы (пластмассы, ткани) с высокой удельной прочностью. Многие полимеры отличаются ценными специальными свойствами: прозрачностью, радиопрозрачностью, диамагнетизмом, антифрикционными свойствами, высокой эластичностью и т. д.

Большинство полимеров легко поддаются различным видам технологической обработки (литье, прессование, вытяжка, обработка резанием, распыление и т. д.) и на их основе производят весьма разнообразные по свойствам продукты: пластмассы и резины, электроизоляционные лаки и лакокрасочные материалы, клеи, компаунды, волокнистые и пленочные материалы.Они находят широкое применение в промышленности и в быту.

 Большинство полимеров может быть получено из дешевого сырья — природных и попутных газов нефтедобычи и переработки нефти, угля в сочетании с водой и воздухом. Поэтому производство полимерных материалов развивается быстрыми темпами.

По структуре полимеры делятся на линейные, линейно-разветвленные и сетчатые: аморфные, кристаллитные и кристаллитно-ориентированные.

Органические полимеры


Основные виды полимерных молекул и структур полимерных материалов. Молекулы - линейные  (а), разветвленные  (б),  сетчатые  (в);    структуры - аморфные (г), кристаллитные  (3), кристаллитно-ориентированные (е).




Органоволокниты


Органоволокниты представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокими удельной прочностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Для синтетических волокон потери прочности при текстильной переработке небольшие; они малочувствительны к повреждениям.
В органоволокнитах значения модуля упругости и температурных коэффициентов линейного расширения упрочнителя и связующего близки. Происходит диффузия компонентов связующего в волокно и химическое взаимодействие между ними. Структура материала бездефектна. Пористость не превышает 1-3 % (в других материалах 10-20 %). Отсюда стабильность механических свойств органоволокнитов при резком перепаде температур, действии ударных и циклических нагрузок. Ударная вязкость высокая (400-700 кДж/м2). Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластичных волокон).
Органоволокниты устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая. Большинство органоволокнктов может длительно работать при температуре 100—150°С, а на основе полиимидного связующего и полиоксадиазольных волокон — при 200—300°С.


Пластичность и хрупкость. Твердость


Способность материала получать большие остаточные деформации, не разрушаясь, носит название пластичности. Свойство пластичности имеет решающее значение для таких технологических операций, как штамповка, вытяжка, волочение, гибка и др. Мерой пластичности является удлинение ? при разрыве. Чем больше ?, тем более пластичным считается материал. К числу весьма пластичных материалов относятся отожженная медь, алюминий, латунь, малоуглеродистая сталь и др. Менее пластичными являются дюраль и бронза. К числу слабо пластичных материалов относятся многие легированные стали.
Противоположным  свойству   пластичности  является свойство хрупкости, т. е. способность материала   разрушаться без   образования   заметных  остаточных деформаций.  Материалы, обладающие этим свойством, называются хрупкими. Для таких материалов величина удлинения при разрыве не превышает 2—5%, а в ряде случаев измеряется долями процента. К хрупким материалам относятся  чугун,   высокоуглеродистая   инструментальная сталь, стекло, кирпич, камни и др. Диаграмма растяжения хрупких материалов не имеет площадки текучести и зоны упрочнения.
Пластичность и хрупкость. Твердость


Кривые растяжения материалов: а-хрупкого, б-пластичного

Пластичность и хрупкость. Твердость


По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Испытание на сжатие производится на коротких цилиндрических образцах, располагаемых между параллельными плитами. Диаграмма сжатия образца имеет вид кривой, показанной на рисунке.
 Здесь, как и для растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, однако, нагрузка не падает, как при растяжении, а резко возрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается; сам образец вследствие трения на торцах принимает бочкообразную форму. Довести образец пластического материала до разрушения практически не удается. Испытуемый цилиндр сжимается в тонкий диск и дальнейшее испытание ограничивается возможностями машины. Поэтому предел прочности при сжатии для такого рода материалов найден быть не может.
Иначе ведут себя при испытании на сжатие хрупкие материалы. Диаграмма сжатия этих материалов сохраняет качественные особенности диаграммы растяжения. Предел прочности хрупкого материала при сжатии определяется так же, как и при растяжении. Разрушение образца происходит с образованием трещин по наклонным или продольным плоскостям.
Сопоставление предела прочности хрупких материалов при растяжении с пределом прочности при сжатии показывает, что эти материалы обладают, как правило, более высокими прочностными показателями при сжатии, нежели при растяжении. Существуют материалы, способные воспринимать при растяжении большие нагрузки, чем при сжатии. Это обычно материалы, имеющие волокнистую структуру, — дерево и некоторые типы пластмасс. Этим свойством обладают и некоторые металлы, например магний.


Полиморфизм


Полиморфизм
Ряду веществ свойственны не одна, а две и более структур, устойчивых при различных температурах и давлениях. Такие структуры называются полиморфными модификациями, или полиморфными формами. Полиморфные модификации принято обозначать греческими буквами. Модификацию, устойчивую при низких температурах, обозначают буквой ?, а при более высоких - ?. Полиморфизм  весьма распространенное явление.
Железо, титан, кобальт, олово, углерод, сегнетоэлектрики, кварц и многие другие материалы могут существовать в различных полиморфных модификациях.
Естественно, полиморфные, модификации отличаются между собой не только структурой, но и свойствами. Например, ?-олово, устойчивое ниже 13° С, является хрупким полупроводником, а ?-олово— весьма вязкий металл.
Полиморфизм
При полиморфизме особо резкие изменения свойств наблюдаются при изменении не только структуры, но и типа химической.
Полиморфизм играет в материаловедении и технологии важную практическую роль. Переводя материал из одной полиморфной модификации в другую, можно управлять его свойствами. Например, практически освоено получение алмазов из графита нагревом его под давлением 100000 атм. до температур примерно 2000° С.
 


Полярные термопласты


Полярными являются полимеры с несимметричной структурой молекул, которым присущи собственные дипольные моменты. Одной из основных особенностей полярных диэлектриков по сравнению с неполярными являются значительно более высокие. Поэтому, как правило, они не пригодны для изоляции в цепях высоких и сверхвысоких частот. Их часто называют низкочастотными диэлектриками.
Вследствие полярности они легче притягивают влагу и полярные примеси. Большинство из них смачиваются водой. Удельное электросопротивление у этих материалов обычно ниже, чем у неполярных. Многие из них обладают высокой химической стойкостью, высокой механической прочностью и эластичностью. После дополнительной пластификации их нередко применяют в виде гибких резинообразных продуктов.
Полихлорвинил (поливинилхлорид, винипласт) получается полимеризацией хлористого винила. Благодаря асимметричному распределению электроотрицательных атомов хлора он заметно полярен. При нормальной температуре полихлорвинил — твердая хрупкая слегка желтоватая смола, отличающаяся высокой химической устойчивостью. Он стоек против действия воды, кислот и щелочей, озона, спирта, бензина и керосина, но растворим в дихлорэтане, хлорбензоле, частично в ацетоне, бензоле и др. Его нагревостойкость (60—70°) и морозостойкость (-25°) невысоки. Он горит с большим трудом и при устранении внешнего источника пламени гаснет. Его электроизоляционные свойства вполне удовлетворительны, но под воздействием электрических искр полихлорвинил легко разлагается, образует проводящие мостики и выделяет хлористый водород. Полихлорвинил легко окрашивается в разные цвета.
Политрифтормонхлорэтилен (фторопласт-3) отличается от фторопласта-4 тем, что один атом фтора заменен на значительно больший по размеру атом хлора, вследствие чего появляется асимметрия в структуре
Полярные термопласты

т. е. возрастает полярность, уменьшается степень кристалличности, увеличивается диэлектрическая проницаемость и значительно возрастают потери, но удельное электросопротивление, электрическая прочность, дугостойкость и влагостойкость у фторопласта-3 остаются высокими.
Температура плавления понижается примерно до 210° (ниже температуры разложения), чем значительно облегчается переработка материала в изделия. Механическая прочность фторопласта-3 значительно выше, чем фторопласта-4. Применяется фторопласт-3 как химически стойкая, и нагревостойкая изоляция.

Полиэфирные смолы представляют собой продукты конденсации многоосновных кислот и спиртов. Двухосновные кислоты при полимеризации с двухатомными спиртами дают линейные термопластичные полимеры. Например, при конденсации терефталевой кислоты с этиленгликолем образуется получивший в последнее время широкое применение продукт — полиэтилентерефталат, или лавсан.

Полимер содержит 65—75% кристаллической фазы, имеет температуру плавления около 240—260°С. Полиэтилентерефталат отличается хорошими диэлектрическими свойствами. Он весьма влагостоек и отличается высоким поверхностным электросопротивлением во влажной атмосфере.

Важной особенностью полиэтилентерефталата является его высокая механическая прочность в ориентированных полимерах, достигающая 350-450 МН/м2. Полиэтилентерефталат применяется чаще всего в виде волокнистой и пленочной изоляции для электрических машин и конденсаторов. Из полиэтилентерефталатовой пленки готовят также аэростаты.


Получение монокристаллов


Большое научное и практическое значение имеют монокристаллы. Монокристаллы отличаются минимальными структурными несовершенствами. Получение монокристаллов позволяет изучать свойства металлов, исключив влияние границ зерен. Применение в монокристаллическом состоянии германия и кремния высокой чистоты дает возможность использовать их полупроводниковые свойства и свести к минимуму неконтролируемые изменения электрических свойств.
Монокристаллы можно получить, если создать условия для роста кристалла только из одного центра кристаллизации. Существует несколько методов, в которых использован этот принцип. Важнейшими из них являются методы Бриджмена и Чохральского.
Метод Бриджмена (рис. а) состоит в следующем: металл, помещенный в тигель с коническим дном 3, нагревается в вертикальной трубчатой печи 1 до температуры на          50-100 °С выше температуры его плавления. Затем тигель с расплавленным металлом 2 медленно удаляется из печи. Охлаждение наступает в первую очередь в вершине конуса, где и появляются первые центры кристаллизации. Монокристалл 4 вырастает из того зародыша, у которого направление преимущественного роста совпадает с направлением перемещения тигля. При этом рост других зародышей подавляется. Для непрерывного роста монокристалла необходимо выдвигать тигель из печи со скоростью, не превышающей скорость кристаллизации данного металла.
Получение монокристаллов


Схемы установок для выращивания монокристаллов
Метод Чохральского (рис. б) состоит в вытягивании монокристалла из расплава. Для этого используется готовая затравка 2 - небольшой образец, вырезанный из монокристалла по возможности без структурных дефектов. Затравка вводится в поверхностный слой жидкого металла 4, имеющего температуру чуть выше температуры плавления. Плоскость затравки, соприкасающаяся с поверхностью расплава, должна иметь кристаллографическую ориентацию, которую желательно получить в растущем монокристалле 3 для обеспечения наибольших значений тех или иных свойств.
Затравку выдерживают в жидком металле для оплавления и установления равновесия в системе жидкость-кристалл. Затем затравку медленно, со скоростью, не превышающей скорости кристаллизации, удаляют из расплава. Тянущийся за затравкой жидкий металл в области более низких температур над поверхностью ванны кристаллизуется, наследуя структуру затравки. Для получения симметричной формы растущего монокристалла и равномерного распределения примесей в нем ванна 5 с расплавом вращается со скоростью до 100 об/мин, а навстречу ей с меньшей скоростью вращается монокристалл.

Диаметр растущего монокристалла зависит от скорости выращивания и температуры расплава. Увеличение скорости выращивания ведет к выделению большей теплоты кристаллизации, перегреву расплава и уменьшению диаметра монокристалла, и, наоборот, уменьшение скорости выращивания приводит к уменьшению количества теплоты кристаллизации, понижению температуры расплава и увеличению диаметра монокристалла.


Полупроводниковые лазеры (КПД > 90%)


В последние годы интенсивно развиваются работы по созданию полупроводниковых источников когерентного излучения — полупроводниковых лазеров, которые открывают возможность непосредственного преобразования энергии электрического тока в энергию когерентного излучения.
Полупроводниковые лазеры (КПД > 90%)


На рис. а сплошной линией показана кривая распределения электронов, отвечающая равновесному состоянию, пунктиром — неравновесному состоянию, при котором концентрация электронов в зоне проводимости и дырок в валентной зоне выше равновесной. Заполнение зон электронами, соответствующее такому инверсионному состоянию, показано на рис. б. Особенность его заключена в том, что кванты света с энергией, равной ширине запрещенной зоны, поглощаться системой не могут. Поглощение такого кванта должно сопровождаться переводом электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости. Так как на верхнем уровне валентной зоны электронов практически нет, а на нижнем уровне зоны проводимости нет свободных мест, то вероятность подобного процесса весьма низка. Это создает благоприятные условия для протекания стимулированного излучения и нарастания фотонной лавины. Квант света стимулирует рекомбинацию электрона и дырки (n-переход), сопровождающуюся рождением точно такого же кванта. Так как эти кванты практически не поглощаются системой, то в дальнейшем они оба участвуют в возбуждении стимулированного излучения, порождая два новых кванта, и т. д. Для того чтобы заставить один и тот же фотон участвовать в возбуждении стимулированного излучения многократно, на противоположных стенках рабочего тела лазера помещают строго параллельные одно другому зеркала (рис. в), которые отражают падающие на них фотоны и возвращают   их   в рабочий   объем лазера. Усилению подвергаются только те  фотоны,   которые движутся практически строго вдоль  оси,  так   как   только эти фотоны испытывают многократные отражения   от зеркал. Все другие фотоны выбывают    из   рабочего объема либо сразу, либо после незначительного числа отражений.   В результате    возникает    остронаправленное излучение вдоль оси,   характеризующееся высокой степенью монохроматичности.
Полупроводниковые лазеры обладают высоким к. п. д., который приближается к 100%. Другим  замечательным  свойством   полупроводниковых   лазеров является  возможность  прямой  модуляции   когерентного  излучения изменением тока, текущего через p-n-переход.   Это позволяет применять полупроводниковые лазеры для целей связи и телевидения.


Поверхностно-пластическая деформация




Дробеструйный наклёп
Поверхностно-пластическая деформация

Упрочнение поверхности,
снятие поверхностных напряжений.
Центробежный шариковый наклёп
                                                                       
Поверхностно-пластическая деформация
                                                                                                                                                                                                                                                           


Превращения в сплавах системы железо-цементит


Диаграмма состояния Fe-Fe3C  характеризует фазовый состав и превращения в системе железо - цементит (6,69 % С). Особенность диаграммы - наличие на оси составов двух шкал, показывающих содержание углерода и цементита. Координаты характерных точек диаграммы приведены в таблице. Точка А определяет температуру плавления чистого железа, а точка D - температуру плавления цементита. Точки N и G соответствуют температурам полиморфных превращений железа. Точки H и Р характеризуют предельную концентрацию углерода соответственно в высокотемпературном и низкотемпературном феррите. Точка Е определяет наибольшую концентрацию углерода в аустените. Значения остальных точек будут ясны после проведенного анализа диаграммы.

Обозначение точки на диаграмме
Температура,
°С
Концентрация углерода, %
А
Н
J
В
N
D
Е
С
F
G
Р
S
К
1539 1499 1499 1499
1392 1260 1147 1147 1147
911
727
727
727
0
0,1
0,16
0,51
0
6,69
2,14
4,3
6,69
0
0,02
0,8
6,69
Превращения в сплавах системы железо-цементит
Превращения в сплавах системы железо-цементит


Характерные точки диаграммы                      состояния железо-цементит




Превращения в сплавах системы Fe-Fe3C происходят как при затвердевании жидкой фазы, так и в твердом состоянии. Первичная кристаллизация идет в интервале температур, определяемых на линиях ликвидус (ABCD) и солидус (AHJECF). Вторичная кристаллизация вызвана превращением железа одной модификации в другую и переменной растворимостью углерода в аустените и феррите; при понижении температуры эта растворимость уменьшается. Избыток углерода из твердых растворов выделяется в виде цементита. Линии ES и PQ характеризуют изменение концентрации углерода в аустените и феррите соответственно. Цементит имеет почти неизменный состав (двойная вертикальная линия DFKL). Цементит, выделяющийся из жидкости, называют первичным; цементит, выделяющийся из аустенита - вторичным; цементит, выделяющийся из феррита - третичным.
Соответственно линию CD на диаграмме состояния называют линией первичного цементита, ES- линией вторичного цементита; PQ-линией третичного цементита. В системе железо - цементит происходят три изотермических превращения:

перитектическое превращение на линии HJB (1499°С)

ФН + ЖВ>AJ

эвтектическое превращение на линии ECF (1147 °С)

ЖС> [АE + Ц]

эвтектоидное превращение на линии PSK (727 °С)

АS> [ФР + Ц]

Эвтектическая смесь аустенита и цементита называется ледебуритом, а эвтектоидная смесь феррита и цементита - перлитом.

Эвтектоид - перлит (содержит 0,8 %С) и эвтектику-ледебурит (4,3 %С) рассматривают как самостоятельные структурные составляющие, оказывающие заметное влияние на свойства сплавов. Перлит чаще всего имеет пластинчатое строение и является прочной структурной составляющей. При охлаждении ледебурита до температур ниже линии SK входящий в него аустенит превращается в перлит, и при температуре 20-25°С ледебурит представляет собой смесь цементита и перлита. В этой структурной составляющей цементит образует сплошную матрицу, в которой размещены колонии перлита. Такое строение ледебурита служит причиной его большой твердости (> НВ 6000) и хрупкости. Присутствие ледебурита в структуре сплавов обусловливает их неспособность к обработке давлением, затрудняет обработку резанием.

Железоуглеродистые сплавы подразделяют на две группы: стали, содержащие до  2,14%С, и чугуны.

Диаграмма  состояния   железо - легирующий  элемент  с  открытой  ?-областью

Превращения в сплавах системы железо-цементит



Превращения в сплавах системы железо-цементит


Превращения в сплавах системы железо-цементит



Влияние легирующих элементов на протяженность замкнутой ?-области

Превращения в сплавах системы железо-цементит




Примесные полупроводники


Полупроводники любой степени чистоты содержат всегда примесные атомы, создающие свои собственные энергетические уровни, получившие название примесных уровней. Эти уровни могут располагаться как в разрешенной, так и в запрещенной зонах полупроводника на различных расстояниях от вершины валентной зоны и дна зоны проводимости. В ряде случаев примеси вводят сознательно для придания полупроводнику необходимых свойств. Рассмотрим основные типы примесных  уровней.
Донорные уровни. Предположим, что в кристалле германия часть атомов германия замещена атомами пятивалентного мышьяка. Германий имеет решетку типа алмаза, в которой каждый атом окружен четырьмя ближайшими соседями, связанными с ним валентными силами (рис. а). Для установления связи с этими соседями атом мышьяка расходует четыре валентных электрона; пятый электрон в образовании связи не участвует. Он продолжает двигаться в поле атома мышьяка.
Примесные полупроводники
Вследствие ослабления поля радиус орбиты электрона увеличивается в 16 раз, а энергия связи его с атомом мышьяка уменьшается примерно в ?2 ? 256 раз, становясь равной Ед ? 0,01 эВ. При сообщении электрону такой энергии он отрывается от атома и приобретает способность свободно перемещаться в решетке германия, превращаясь, таким образом, в электрон проводимости (рис. б).
На языке зонной теории этот процесс можно представить следующим образом. Между заполненной валентной зоной и свободной зоной проводимости располагаются энергетические уровни пятого электрона атомов мышьяка (рис. в). Эти уровни размещаются непосредственно у дна зоны проводимости, отстоя от нее на расстоянии Eg ? 0,01 эВ. При сообщении электронам таких примесных уровней энергии Eg они переходят в зону проводимости (рис. г). Образующиеся при этом положительные заряды («дырки») локализуются на неподвижных атомах мышьяка и в электропроводности не участвуют.
Примеси, являющиеся источником электронов проводимости, называются донорами, а энергетические уровни этих примесей — донорными уровнями.
Полупроводники, содержащие донорную примесь, называются электронными полупроводниками, или полупроводниками n-типа, часто их называют также донорными полупроводниками.

Примесные полупроводники
 Акцепторные уровни. Предположим теперь, что в решетке германия часть атомов германия замещена атомами трехвалентного индия (рис. а). Для образования связей с четырьмя ближайшими соседями у атома индия не хватает одного электрона. Его можно «заимствовать» у атома германия. Для этого требуется энергия порядка Еа ? 0,01 эВ. Разорванная связь представляет собой дырку (рис. б), так как она отвечает образованию в валентной зоне германия вакантного состояния.

На рис. в показана зонная структура германия, содержащего примесь индия. Непосредственно у вершины валентной зоны на расстоянии Еа ? 0,01 эВ располагаются незаполненные уровни атомов индия. Близость этих уровней к валентной зоне приводит к тому, что уже при относительно невысоких температурах электроны из валентной зоны переходят на примесные уровни (рис. г). Связываясь с атомами индия, они теряют способность перемещаться в решетке германия и в проводимости не участвуют. Носителями заряда являются лишь дырки, возникающие в валентной зоне.

Примеси, захватывающие электроны из валентной зоны полупроводника, называют акцепторными, а энергетические уровни этих примесей — акцепторными уровнями. Полупроводники, содержащие также примеси, называются дырочными полупроводниками, пли полупроводниками  p-типа; часто их называют акцепторными полупроводниками.


Прямое включение: Обратное включение:


Прямое включение: Обратное включение:
Прямое включение: Обратное включение:

У диодов в качестве одного из основных параметров используют обратный ток Iобр, который измеряют при определенном значении обратного напряжения.
 I = I
Прямое включение: Обратное включение:
(e
Прямое включение: Обратное включение:
- 1)
Прямое включение: Обратное включение:



Закон изменения тока
Прямое включение: Обратное включение:

Прямое включение: Обратное включение:



Прочность конструкционных материалов и критерии ее оценки


Конструкционная прочность - комплексная характеристика, включающая сочетание критериев прочности, надежности и долговечности.
Критерии прочности материала выбирают в зависимости от условий его работы. Критериями прочности при статистических нагрузках являются временное сопротивление или предел текучести, характеризующие сопротивление материала пластической деформации. Поскольку при работе большинства деталей пластическая деформация недопустима, то их несущую способность, как правило, определяют по пределу текучести. Для приближенной оценки статической прочности используют твердость НВ.
Большинство деталей машин испытывает длительные циклические нагрузки. Критерий их прочности - предел выносливости. По величине выбранных критериев прочности рассчитывают допустимые рабочие напряжения. При этом, чем больше прочность материала, тем больше допустимые рабочие напряжения и тем самым меньше размеры и масса детали. Однако повышение уровня прочности материала и, как следствие, рабочих напряжений сопровождается увеличением упругих деформаций.
Для ограничения упругой деформации материал должен обладать высоким модулем упругости (или сдвига), являющимся критерием его жесткости. Именно критерии жесткости, а не прочности обусловливают размеры станин станков, корпусов редукторов и других деталей, от которых требуется сохранение точных размеров и формы.
Возможно и противоположное требование. Для пружин, мембран и других чувствительных упругих элементов приборов, наоборот, важно обеспечить большие упругие перемещения. Для материалов, используемых в авиационной и ракетной технике, важное значение имеет эффективность материала по массе.
Таким образом, в качестве критериев конструкционной прочности выбирают те характеристики, которые наиболее полно отражают прочность в условиях эксплуатации.
Надежность - свойство материала противостоять хрупкому разрушению. Хрупкое разрушение вызывает внезапный отказ деталей в условиях эксплуатации.
Оно считается наиболее опасным из-за протекания с большой скоростью при напряжениях ниже расчетных, а также возможных аварийных последствий.

Для предупреждения хрупкого разрушения конструкционные материалы должны обладать достаточной пластичностью и ударной вязкостью. Однако эти параметры надежности, определенные на небольших лабораторных образцах без учета условий эксплуатации конкретной детали, достаточно показательны лишь для мягких малопрочных материалов. Необходимо также учитывать то, что в условиях эксплуатации действуют факторы, дополнительно снижающие их пластичность, вязкость и увеличивающие опасность хрупкого разрушения. К таким факторам относятся концентраторы напряжений (надрезы), понижение температуры, динамические нагрузки, увеличение размеров деталей.

Для того чтобы избежать внезапных поломок в условиях эксплуатации, необходимо учитывать трещиностойкость материала. Трещиностойкость - группа параметров надежности, характеризующих способность материала тормозить развитие трещины.

Количественная оценка трещиностойкости основывается на линейной механике разрушения. В соответствии с ней очагами разрушения высокопрочных материалов служат небольшие трещины эксплуатационного или технологического происхождения. Трещины являются острыми концентраторами напряжений, местные (локальные) напряжения, в вершине которых могут во много раз превышать средние расчетные напряжения.

Долговечность - свойство материала сопротивляться развитию постепенного разрушения, обеспечивая работоспособность деталей в течение заданного времени. Причины потери работоспособности разнообразны: развитие процессов усталости, изнашивания, ползучести, коррозии, радиационного разбухания и пр. Эти процессы вызывают постепенное накопление необратимых повреждений в материале и его разрушение. Обеспечение долговечности материала означает уменьшение до требуемых значений скорости его разрушения.

Для большинства деталей машин долговечность определяется сопротивлением материала усталостным разрушениям (циклической долговечностью) или сопротивлением изнашиванию.


Поэтому эти причины потери работоспособности материала требуют подробного рассмотрения.

Циклическая долговечность характеризует работоспособность материала в условиях многократно повторяющихся циклов напряжений. Цикл напряжения - совокупность изменения напряжения между двумя его предельными значениями ?max и ?min в течение периода Т.

Процессы постепенного накопления повреждений в материале под действием циклических нагрузок, приводящие к изменению его свойств, образованию трещин, их развитию и разрушению, называют усталостью, а свойство противостоять усталостивыносливостью.

Износостойкость - свойство материала оказывать в определенных условиях трения сопротивление изнашиванию. Изнашивание - процесс постепенного разрушения поверхностных слоев материала путем отделения его частиц под влиянием сил трения. Результат изнашивания называют износом. Его определяют по изменению размеров, уменьшению объема или массы. Износостойкость материала оценивают величиной, обратной скорости изнашивания.


Рекристаллизационный отжиг


Нагрев деформированных полуфабрикатов или деталей выше температуры рекристаллизации называют рекристаллизационным отжигом; в процессе выдержки происходит главным образом рекристаллизация. Скорость охлаждения при этой разновидности отжига не имеет решающего значения; обычно охлаждение по окончании выдержки проводят на спокойном воздухе. Цель отжига - понижение прочности и восстановление пластичности деформированного металла, получение определенной кристаллографической текстуры, создающей анизотропию свойств, и получение заданного размера зерна.
Рекристаллизационный отжиг часто используют в качестве межоперационной смягчающей обработки при холодной прокатке, волочении и других операциях холодного деформирования. Температуру отжига обычно выбирают на 100-200 °С выше температуры рекристаллизации. В некоторых металлах и твердых растворах рекристаллизация сопровождается образованием текстуры (преимущественной ориентации кристаллов в объеме детали), которая создает анизотропию свойств. Это позволяет улучшить те или иные свойства вдоль определенных направлений в деталях.  В машиностроении и приборостроении широкое применение находят металлы и сплавы - твердые растворы, не имеющие фазовых превращений в твердом состоянии. В таких материалах единственной возможностью регулирования размера зерен является сочетание холодной пластической деформации с последующим рекристаллизационным отжигом.


Самопроизвольная кристаллизация


Самопроизвольная кристаллизация обусловлена стремлением вещества иметь более устойчивое состояние, характеризуемое уменьшением термодинамического потенциала G.  С повышением температуры термодинамический потенциал вещества как в твердом, так и в жидком состоянии уменьшается, что показано на рисунке.
Самопроизвольная кристаллизация

Изменение термодинамического потенциала в зависимости от температуры для металла в твердом и жидком состояниях
Температура, при которой термодинамические потенциалы вещества в твердом и жидком состояниях равны, называется равновесной температурой кристаллизации. Кристаллизация происходит в том случае, если термодинамический потенциал вещества в твердом состоянии будет меньше термодинамического потенциала вещества в жидком состоянии, т. е. при переохлаждении жидкого металла до температур ниже равновесной. Плавление - процесс, обратный кристаллизации, происходит при температуре выше равновесной, т. е. при перегреве. Разница между реальными температурами плавления и кристаллизации называется температурным гистерезисом.
Поскольку жидкий металл с присущим ему ближним порядком в расположении атомов обладает большей внутренней энергией, чем твердый со структурой дальнего порядка, при кристаллизации выделяется теплота. Между теплотой  и температурой кристаллизации Тк существует определенная связь. Так как при равновесной температуре кристаллизации термодинамические потенциалы в жидком и твердом состояниях равны, то
Самопроизвольная кристаллизация



Самопроизвольная кристаллизация
 => 
Самопроизвольная кристаллизация
  => 
Параметр ?S = Q/TK характеризует упорядоченность в расположении атомов при кристаллизации. В зависимости от сил межатомной связи теплота кристаллизации для различных металлов изменяется от 2500 Дж/моль (Na, К и др.) до 20000 Дж/моль (W и др.).
Когда кристаллизуется чистый элемент, отвод теплоты, происходящий вследствие охлаждения, компенсируется теплотой кристаллизации.
В связи с этим на кривой охлаждения, изображаемой в координатах температура-время, процессу кристаллизации соответствует горизонтальный участок:

Самопроизвольная кристаллизация


Кривые охлаждения металла

При большом объеме жидкого металла выделяю щаяся при кристаллизации теплота повышает температуру практически до равновесной (кривая а); при малом объеме металла выделяющейся теплоты недостаточно, вследствие чего кристаллизация происходит с переохлаждением по сравнению с равновесной температурой (кривая б).

Разница между равновесной (Ts) и реальной (Тn) температурой кристаллизации называется степенью переохлаждения ?T. Степень переохлаждения зависит от природы металла. Она увеличивается с повышением чистоты металла и с ростом скорости охлаждения. Обычная степень переохлаждения металлов при кристаллизации в производственных условиях колеблется от 10 до 30 °С; при больших скоростях охлаждения она может достигать сотен градусов.

Степень перегрева при плавлении металлов, как правило, не превышает нескольких градусов.

В жидком состоянии атомы вещества вследствие теплового движения перемещаются беспорядочно. В то же время в жидкости имеются группировки атомов небольшого объема, в пределах которых расположение атомов вещества во многом аналогично их расположению в решетке кристалла. Эти группировки неустойчивы, они рассасываются и вновь появляются в жидкости. При переохлаждении жидкости некоторые из них, наиболее крупные, становятся устойчивыми и способными к росту. Эти устойчивые группировки атомов называют центрами кристаллизации (зародышами). Образованию зародышей способствуют флуктуации энергии, т. е. отклонения энергии группировок атомов в отдельных зонах жидкого металла от некоторого среднего значения. Размер образовавшегося зародыша зависит от величины зоны флуктуации.

Появление центров изменяет термодинамический потенциал системы ?Gобщ. С одной стороны, при переходе жидкости в кристаллическое состояние термодинамический потенциал уменьшается на V?G? (G1), с другой стороны, он увеличивается вследствие появления поверхности раздела между жидкостью и кристаллическим зародышем на величину, равную S? (G2):



?Gобщ. = - V?G? + S?



Самопроизвольная кристаллизация



где V-объем зародыша; S-поверхность зародыша; ?- удельное поверхностное натяжение на границе кристалл-жидкость; ?G?-удельная разность термодинамических потенциалов при переходе жидкости в кристаллическое состояние.

Изменение термодинамического потенциала при образовании зародышей в зависимости от их размера

Если принять, что зародыш имеет форму куба с ребром А, то общее изменение термодинамического потенциала

?Gобщ. = A3?G? + 6A2 ?



Отсюда следует, что графическая зависимость изменения термодинамического потенциала от размера зародыша имеет максимум  при некотором значении А, названном критическим. Зародыши с размером больше критического вызывают уменьшение ?Gобщ. и поэтому являются устойчивыми, способными к росту. Зародыши, имеющие размер меньше критического, нестабильны и растворяются в жидкости, поскольку вызывают увеличение ?Gобщ.

                        

Самопроизвольная кристаллизация


Самопроизвольная кристаллизация


Самопроизвольная кристаллизация




Самопроизвольная кристаллизация
     =>  
Самопроизвольная кристаллизация
  =>  

Скорость процесса и окончательный размер кристаллов при затвердевании определяются соотношением скоростей роста кристаллов и образования центров кристаллизации. Скорость образования зародышей измеряется числом зародышей, образующихся в единицу времени в единице объема; скорость роста - увеличением линейного размера растущего кристалла в единицу времени. Оба процесса связаны с перемещениями атомов и зависят от температуры. Графическая зависимость скорости образования зародышей и скорости их роста от степени переохлаждения представлена на рисунке.

Самопроизвольная кристаллизация


Изменение скорости образования зародышей (с. з.) и скорости роста кристаллов (с. р.) в зависимости от степени переохлаждения

Для металлов, которые в обычных условиях кристаллизации не склонны к большим переохлаждениям, как правило, характерны восходящие ветви кривых.Это значит, что при равновесной температуре, когда степень переохлаждения равна нулю, скорость образования зародышей и скорость роста также равны нулю, т. е. кристаллизации не происходит. При небольших степенях переохлаждения, когда велик зародыш критического размера, а скорость образования зародышей мала, при затвердевании формируется крупнокристаллическая структура. Небольшие степени переохлаждения достигаются при заливке жидкого металла в форму с низкой теплопроводностью (земляная, шамотовая) или в подогретую металлическую форму. Увеличение переохлаждения происходит при заливке жидкого металла в холодные металлические формы, а также при уменьшении толщины стенок отливки. Поскольку при этом скорость образования зародышей увеличивается более интенсивно, чем скорость их роста, получаются более мелкие кристаллы.


Силицирование (Si)


Силицированием называется процесс насыщения поверхности стали кремнием. В результате силицирования сталь приобретает высокую коррозионную стойкость в морской воде, в различных кислотах и повышенную износостойкость. Кроме того, силицирование резко повышает окалиностойкость молибдена и некоторых других металлов и сплавов.
Силицированный слой представляет собой твердый раствор кремния в ?-железе. Силицированный слой несмотря на низкую твердость и значительную пористость после пропитки маслом при температуре 170—200° С имеет повышенную износостойкость.
Силицирование можно проводить в порошкообразных смесях, состоящих из 60% ферросилиция, 39% окиси алюминия и 1 % хлористого аммония, но наиболее часто применяют газовое силицирование. При газовом силицировании при температуре 1000°С в течение 2—4 ч образуется слой толщиной 0,5—1,0 мм.
Силицированию подвергают детали, применяемые в оборудовании химической, бумажной и нефтяной промышленности.
В последние годы разработаны и получают промышленное внедрение новые процессы поверхностного насыщения металлов — титанирование  и цинкование.



Ситаллы


Ситаллы получают на основе неорганических стекол путем их полной или частичной управляемой кристаллизации. Термин «ситаллы» образован от слов: стекло и кристаллы. За рубежом их называют стеклокерамикой, пирокерамами. По структуре и технологии получения ситаллы занимают промежуточное положение между обычным стеклом и керамикой. От неорганических стекол они отличаются кристаллическим строением, а от керамических материалов — более мелкозернистой и однородной микрокристаллической структурой. Ситаллы подразделяют на фотоситаллы, термоситаллы и шлакоситаллы.
Ситаллы

Схема кристаллизации стекла  при образовании ситаллов с помощью катализаторов
Фотоситаллы получают из стекол литиевой системы с нуклеа-торами — коллоидными красителями. Фотохимический процесс протекает при облучении стекла ультрафиолетовыми или рентгеновскими лучами, при этом внешний вид стекла не изменяется. Процесс кристаллизации происходит при повторном нагревании изделия.
Термоситаллы   получаются   из   стекол   систем  MgO—А12О3—CaO—A12O3—SiO2. Кристаллическая структура ситалла создается только в результате повторной термообработки предварительно отформованных изделий.
Структура ситаллов многофазная, состоит из зерен одной или нескольких кристаллических фаз, скрепленных между собой стекловидной прослойкой. Содержание кристаллической фазы колеблется от 30 до 95 % . Размер кристаллов обычно не превышает 1—2 мкм. По внешнему виду ситаллы могут быть непрозрачными и прозрачными.
Шлакоситаллы получают на основе доменных шлаков и катализаторов (сульфаты, порошки железа и др.); вводятся соединения фтора для усиления ситаллизации.
В отличие от обычного стекла, свойства которого определяются в основном его химическим составом, для ситаллов решающее значение имеют структура и фазовый состав. Причина ценных свойств ситаллов заключается в их исключительной мелкозернистости, почти идеальной поликристаллической структуре. Свойства ситаллов изотропны.
В них совершенно отсутствует всякая пористость. Усадка материала при его переработке незначительна. Большая абразивная стойкость делает их малочувствительными к поверхностным дефектам.

Плотность ситаллов лежит в пределах 2400—2950 кг/м8. Прочность ситалла зависит от температуры: до температуры 700—780°С прочность материала уменьшается незначительно, при более высоких температурах быстро падает. Жаропрочность ситаллов под нагрузкой составляет 800—1200 °С. Твердость их приближается к твердости закаленной стали (микротвердость 7000—10500 МПа). Они весьма износостойки. По теплопроводности ситаллы в результате повышенной плотности превосходят стекла. Стеклокристаллические материалы обладают высокой химической устойчивостью к кислотам и щелочам, не окисляются даже при высоких температурах. Они газонепроницаемы и обладают нулевым водопоглощением. Хорошие диэлектрики.

Применение ситаллов определяется их свойствами. Из ситаллов изготовляют подшипники, детали для двигателей внутреннего сгорания, трубы для химической промышленности, оболочки вакуумных электронных приборов, детали радиоэлектроники. Ситаллы используют в качестве жаростойких покрытий для защиты металлов от действия высоких температур. Их применяют в производстве текстильных машин, абразивов для шлифования, фильер для вытягивания синтетических волокон. Из ситаллов могут быть изготовлены лопасти воздушных компрессоров, сопла реактивных двигателей, они используются для изготовления точных калибров и оснований металлорежущих станков.


Слоистые пластмассы


Они состоят из пропитанных смолой и склеенных между собой листов наполнителя (древесного шпона, бумаги, ткани, стеклоткани и т. п.) и отличаются наибольшей прочностью. Однако из них наиболее трудно прессовать детали сложной конфигурации. Они отличаются максимальной анизотропией свойств. В электро- и радиотехнике, а также в приборостроении из материалов этой группы чаще всего применяют гетинакс (бумолит), текстолит и стеклопласты.
Гетинакс состоит из слоев бумаги, пропитанных смолой и спрессованных под давлением при нагреве в листы и плиты толщиной 0,2—40 мм или трубы. Гетинакс применяют в основном для различных панелей, изоляционных шайб и прокладок, колодок зажимов, каркасов катушек, проходных изоляторов, изоляции обмоток и т. д.
Текстолит состоит из слоев хлопчатобумажной ткани, пропитанных бакелитовой смолой и спрессованных под давлением при нагреве до 150—160° С. По сравнению с гетинаксом текстолит отличается повышенной твердостью и прочностью при ударных нагрузках и более высоким сопротивлением скалыванию вдоль слоев. Он характеризуется лучшей способностью обрабатываться механически без растрескивания и сколов. Текстолит дороже гетинакса. Тем не менее, благодаря высокой вибростойкости и хорошим технологическим качествам текстолит применяют не только как конструкционный, но и как электроизоляционный материал.
Текстолит применяют для изготовления щитков и панелей, изолирующих и тросовых роликов, бесшумных скоростных шестерен, вкладышей подшипников, амортизационных прокладок для поглощения вибраций.
Стеклопласт - пластик с наполнителем из стекловолокна. Применение стеклянных волокон вместо органических позволяет резко улучшить механические и электрические свойства, повысить нагревостойкость, снизить влагопоглощение. Если применяют наполнитель из стеклянной ткани, то пластик называется стеклотекстолитом.
В современных стеклопластах, применяя прочное бесщелочное стекловолокно и новые полимеры, удается реализовать очень высокую удельную прочность, значительно большую, чем у известных металлических материалов.

Поэтому в последние годы развивается тенденция по изготовлению основных силовых конструкций летательных аппаратов и авиационных двигателей из прочных стеклопластов. Из них готовят также обтекатели антенн и т. п. В конструкционных целях применяют аналогичные стеклопластам по структуре другие композиционные материалы: хаифилл — полимер, наполненный графитовым волокном, полимеры, наполненные борным, сапфировым волокном и т. п.

Пенопласт (вспененные полимеры) — важная разновидность современных пластмасс. Пенистой структуры достигают введением в смолу газообразователей (порофоров)— веществ, которые в процессе производства пластмассовых изделий разлагаются с выделением газов.

Пенопласты отличаются малым удельным весом, хорошими звуко-, тепло- и электроизоляционными свойствами: исключительно малой диэлектрической проницаемостью и малыми диэлектрическими потерями. Поэтому пенопласты являются хорошими радиопрозрачными материалами. Они применяются в обтекателях антенн как наполнители для повышения жесткости авиационных конструкций, как тепло-, звукоизоляционные перегородки. Эпоксидные пенопласты начинают широко применять в виде электроизоляционной влагостойкой пенистой заливочной массы — пенокомпаунда. Кремнийорганические пенопласты отличаются максимальной нагревостойкостью (длительно до 200—250°, кратковременно — 300—350°).

Для тепло- и злектроизоляции при более высоких температурах (длительно 500—600°) применяют иногда неорганические пенопласты — вспененная слюда вермикулит, пеностекло и пенокерамика.


Собственные полупроводники


Химически чистые полупроводники называются собственными полупроводниками. К ним относится ряд чистых химических элементов (германий, кремний, селен, теллур и др.) и многие химические соединения, такие, например, как арсенид галлия (GaAs), арсенид индия (InAs), антимонид индия (InSb), карбид кремния (SiC) и т. д.
На рис. а показана упрощенная схема зонной структуры собственного полупроводника. При абсолютном нуле его валентная зона укомплектована полностью, зона проводимости, расположенная над валентной зоной на расстоянии Eg является пустой. Поэтому при абсолютном нуле собственный полупроводник, как и диэлектрик, обладает нулевой проводимостью.
Собственные полупроводники


Однако с повышением температуры вследствие термического возбуждения электронов валентной зоны часть из них приобретает энергию, достаточную для преодоления запрещенной зоны и перехода в зону проводимости (рис. б). Это приводит к появлению в зоне проводимости свободных электронов, а в валентной зоне - свободных уровней, на которые могут переходить электроны этой зоны. При приложении к такому кристаллу внешнего поля в нем возникает направленное движение электронов зоны проводимости и валентной зоны, приводящее к появлению электрического току. Кристалл становится проводящим.
Чем уже запрещенная зона и выше температура кристалла, тем больше электронов   переходит   в   зону   проводимости,   поэтому   тем более высокую электропроводность приобретает кристалл.
Из изложенного вытекают  следующие два важных вывода.
Проводимость полупроводников     является     проводимостью возбужденной: она   появляется под действием внешнего фактора,   способного сообщить    электронам валентной зоны энергию, достаточную для переброса их в зону проводимости. Такими факторами могут быть нагревание полупроводников, облучение их светом и ионизирующим излучением.
Собственные полупроводники
                                                                            
                                                                             где    ? – удельная проводимость;


Список литературы


  1. Авиационное       электрорадиоматериаловедение.      Коровский Ш. Я., М. «Машиностроение», 1972, стр. 356.
  2. Гусев В. Г.,  Гусев Ю. М. Электроника: Учеб. пособие для приборостроит. спец. вузов.— 2-е изд., перераб. и доп.— М.: Высш. школа. 1991.— 622с.: ил.
  3. Зуев В. М. Термическая обработка металлов. Учебник для техн. училищ. — 2-е изд., перераб. и доп.— М.: Высш. школа, 1981. — 296 с., ил.
  4. Епифанов Г. И. Физика твердого тела. Учеб. пособие для втузов. Изд. 2-е, перераб. и доп. М., «Высш. школа», 1977. 288 с. с ил.
  5. Касаткин А. С. Основы электротехники: Учебное пособие для сред. ПТУ. – 3-е изд., стер. – М.: Высшая шк., 1986. – 287с.: ил.
  6. Колобнев И. Ф., Крымов В. В., Мельников А. В.  Справочник литейщика. Цветное литье из легких сплавов. Изд. 2-е, перераб. И доп. М., “Машиностроение”, 1974, 416с.
  7. Лачин В. И., Савёлов Н. С. Электроника: Учеб. пособие. - Ростов н/Д: изд-во «Феникс», 2000. — 448 с.
  8. Лахтин Ю. М., Леонтьева В. П. Материаловедение: Учебник для высших технических учебных заведений. —3-е изд., перераб. и доп. — М.: Машиностроение, 1990. 528 с.: ил.
  9. Материаловедение: Учебник для высших технических учебных заведений.               Б. Н. Арзамасов, И. И. Сидорин, Г. Ф. Косолапов и др.; Под общ. ред.                           Б. Н. Арзамасова.—2-е изд., испр. и доп.— М.: Машиностроение, 1986.—384 с., ил.
  10. Новиков И. И. Теория термической обработки металлов: Учебник для вузов. 4-е изд., перераб.  и доп.: Металлургия,     1980. 460 с.
  11. Пасынков В. В., Сорокин В. С. Материалы электронной техники: Учебник для студ. вузов по спец. электронной техники. 3-е изд. — СПб.: Издательство «Лань», 2001. — 368 с., ил.
  12. Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство. Пер. с нем.-М.: Мир, 1982.-512 с., ил.
  13. Цветное литье. Легкие сплавы. Под ред. Колобнева, М., “Машиностроение”, 1966, 391с.



Сплавы на основе алюминия


Свойства алюминия. Алюминий - металл серебристо-белого цвета. Он не имеет полиморфных превращений и кристаллизируется в решетке гранецентрированного куба.
Алюминий обладает малой плотностью, хорошими теплопроводностью и электропроводимостью, высокой пластичностью и коррозионной стойкостью. Примеси ухудшают все эти свойства.
Постоянные примеси алюминия Fe, Si, Cu, Zn, Ti. В зависимости от содержания примесей первичный алюминий подразделяют на три класса: особой чистоты А999 (?0,001% примесей), высокой чистоты А995, А99, А97, А95 (0,005-0,05% примесей) и технической чистоты А85, А8 и др. (0,15-1% примесей). Технический алюминий, выпускаемый в виде деформируемого полуфабриката (листы, профили, прутки и др.), маркируют АД0 и АД1. Механические свойства алюминия зависят от его чистоты и состояния. Увеличение содержания примесей и пластическая деформация повышают прочность и твердость алюминия. Ввиду низкой прочности алюминий применяют для ненагруженных деталей и элементов конструкций, когда от материала требуется легкость, свариваемость, пластичность. Так, из него изготовляют рамы, двери, трубопроводы, фольгу, цистерны для перевозки нефти и нефтепродуктов, посуду и др. Благодаря высокой теплопроводности он используется для различных теплообменников, в промышленных и бытовых холодильниках. Высокая электропроводимость алюминия способствует его широкому применению для конденсаторов, проводов, кабелей, шин и др.
Механические свойства алюминия

Марка
Сумма примесей, %
Состояние

?0,2
?,%
HB
MПа
А995
А5
АО
0,005
0.5
1
Литой
Литой
Литой
Деформированный и отожженный
Деформированный
50 75 90 90
140
-
-
-
30
100
45
29
25
30
12
150 200
250
250
320
Из других свойств алюминия следует отметить его высокую отражательную способность, в связи с чем он используется для прожекторов, рефлекторов, экранов телевизоров.
Алюминий имеет малое эффективное поперечное сечение захвата нейтронов. Он хорошо обрабатывается давлением, сваривается газовой и контактной сваркой, но плохо обрабатывается резанием. Алюминий имеет большую усадку затвердевания. Высокая теплота плавления и теплоемкость способствуют медленному остыванию алюминия из жидкого состояния, что дает возможность улучшать отливки из алюминия и его сплавов путем модифицирования, рафинирования и других технологических операций.

Общая характеристика и классификация алюминиевых сплавов. Алюминиевые сплавы характеризуют высокой удельной прочностью, способностью сопротивляться инерционным и динамическим нагрузкам, хорошей технологичностью. Временное сопротивление алюминиевых сплавов достигает 500 — 700 МПа при плотности не более 2850 кг/м3. По удельной прочности некоторые алюминиевые сплавы приближаются или соответствуют высокопрочным сталям. Большинство алюминиевых сплавов имеют хорошую коррозионную стойкость (за исключением сплавов с медью), высокие теплопроводность и электропроводимость и хорошие технологические свойства (обрабатываются давлением, свариваются точечной сваркой, а специальные - сваркой плавлением, в основном хорошо обрабатываются резанием). Алюминиевые сплавы пластичнее магниевых и многих пластмасс. Большинство из них превосходят магниевые сплавы по коррозионной стойкости, пластмассы - по стабильности свойств.

Основными легирующими элементами алюминиевых сплавов являются Cu, Mg, Si, Mn, Zn; реже-Li, Ni, Ti. Многие легирующие элементы образуют с алюминием твердые растворы ограниченной переменной растворимости и промежуточные фазы. Это дает возможность подвергать сплавы упрочняющей термической обработке. Она состоит из закалки на пересыщенный твердый раствор и естественного или искусственного старения.

Легирующие элементы, особенно переходные, повышают температуру рекристаллизации алюминия.


При кристаллизации они образуют с алюминием пересыщенные твердые растворы. В процессе гомогенизации и горячей обработки давлением происходит распад твердых растворов с образованием тонкодисперсных частиц интерметаллидных фаз, препятствующих прохождению процессов рекристаллизации и упрочняющих сплавы. Это явление получило название структурного упрочнения, а применительно к прессованным полуфабрикатам - пресс-эффекта. По этой причине некоторые алюминиевые сплавы имеют температуру рекристаллизации выше температуры закалки. Для снятия остаточных напряжений в нагартованных полуфабрикатах (деталях), полученных холодной обработкой давлением, а также в фасонных отливках проводят низкий отжиг.

Конструкционная прочность алюминиевых сплавов зависит от примесей Fe и Si. Они образуют в сплавах нерастворимые в твердом растворе фазы. Независимо от формы (пластинчатой, игольчатой и др.) кристаллы этих фаз снижают пластичность, вязкость разрушения, сопротивление развитию трещин. Легирование сплавов марганцем уменьшает вредное влияние примесей, так как он связывает их в четвертую фазу, кристаллизирующуюся в компактной форме. Однако более эффективным способом повышения конструкционной прочности является снижение содержания примесей с 0,5-0,7%  до 0,1-0,3% (чистый сплав), а иногда и до сотых долей процента (сплав повышенной чистоты). В первом случае к марке сплава добавляют букву Ч, например, Д16Ч, во втором-ПЧ, например, В95ПЧ. Особенно значительно повышаются характеристики пластичности и вязкости разрушения в направлении, перпендикулярном пластической деформации.

Алюминиевые сплавы классифицируют по технологии изготовления (деформируемые, литейные, спеченные), способности к термической обработке (упрочняемые и неупрочняемые) и свойствам.


Сплавы на основе магния


Свойства магния. Магний-металл серебристо-белого цвета. Он не имеет полиморфных превращений и кристаллизуется в плотноупакованной гексагональной решетке.
Магний и его сплавы отличаются низкой плотностью, хорошей обрабатываемостью резанием и способностью воспринимать ударные и гасить вибрационные нагрузки. Теплопроводность магния в 1,5, а электропроводимость — в 2 раза ниже, чем у алюминия. Примерно в 1,5 раза меньше, чем у алюминия, и его модуль нормальной упругости. Однако они близки по удельной жесткости. В зависимости от содержания примесей установлены следующие марки магния (ГОСТ 804-72): Мг96 (99,96% Mg), Мг95 (99,95% Mg), Мг90 (99,90% Mg). Примеси Fe, Si, Ni, Си понижают и без того низкие пластичность и коррозионную стойкость. При нагреве магний активно окисляется и при температуре выше 623°С на воздухе воспламеняется. Это затрудняет плавку и разливку магния и его сплавов. Порошок, тонкая лента, мелкая стружка магния представляют большую опасность, так как самовозгораются на воздухе при обычных температурах, горят с выделением большого количества теплоты и излучением ослепительно яркого света.
Общая характеристика и классификация магниевых сплавов. Достоинством магниевых сплавов является высокая удельная прочность. Временное сопротивление отдельных сплавов достигает 250-400 МПа. Основными легирующими элементами магниевых сплавов являются Al, Zn, Mn. Для дополнительного легирования используют цирконий, кадмий, церий, ниодим и др. Механические свойства сплавов магния при температуре 20-25°С улучшаются при легировании алюминием, цинком, цирконием. Цирконий и церий оказывают модифицирующее действие на структуру сплавов магния. Особенно эффективно модифицирует цирконий. Добавка 0,5-0,7% Zr уменьшает размер зерна магния в 80-100 раз. Это объясняется структурным и размерным соответствием кристаллических решеток. Кроме того, цирконий и марганец способствуют устранению или значительному уменьшению влияния примесей железа и никеля на свойства сплавов.
Они образуют с этими элементами промежуточные фазы большой плотности, которые при кристаллизации выпадают на дно тигля, очищая тем самым сплавы от вредных примесей.

Увеличение растворимости легирующих элементов в магнии с повышением температуры дает возможность упрочнять магниевые сплавы с помощью закалки и искусственного старения. Однако термическая обработка магниевых сплавов затруднена из-за замедленных диффузионных процессов в магниевом твердом растворе. Малая скорость диффузии требует больших выдержек при нагреве под закалку для растворения вторичных фаз. Благодаря этому такие сплавы можно закаливать на воздухе, они не склонны к естественному старению. При искусственном старении необходимы высокие температуры (до 200° С) и большие выдержки (до 16-24 ч). Наибольшее упрочнение термической обработкой достигается у сплавов магния, легированных неодимом.

Временное сопротивление и особенно предел текучести магниевых сплавов значительно повышаются с помощью термомеханической обработки, которая состоит в пластической деформации закаленного сплава перед его старением.

Из других видов термической обработки к магниевым сплавам применимы различные виды отжига: гомогенизация, рекристаллизационный отжиг и отжиг для снятия остаточных напряжений. Для деформируемых сплавов диффузионный отжиг совмещают с нагревом для горячей обработки давлением. Температура рекристаллизации магниевых сплавов в зависимости от их состава находится в интервале 150-300°С, а рекристаллизационного отжига - соответственно в интервале 250-350 °С. Более высокие температуры вызывают рост зерна и понижение механических свойств. Отжиг для снятия остаточных напряжений проводят при температурах ниже температур рекристаллизации.

Магниевые сплавы хорошо обрабатываются резанием (лучше, чем стали, алюминиевые и медные сплавы), легко шлифуются и полируются. Высокие скорости резания и небольшой расход энергии способствуют снижению стоимости обработки резанием деталей из магниевых сплавов по сравнению с другими сплавами.


Они удовлетворительно свариваются контактной роликовой и дуговой сваркой. Прочность сварных швов деформируемых сплавов составляет 90% от прочности основного металла.

К недостаткам магниевых сплавов, наряду с низкой коррозионной стойкостью и малым модулем упругости, следует отнести плохие литейные свойства, склонность к газонасыщению, окислению и воспламенению при их приготовлении. Небольшие добавки бериллия (0,02-0,05%) уменьшают склонность к окисляемости, кальция (до 0,2%) - к образованию микрорыхлот в отливках. Плавку и разливку магниевых сплавов ведут под специальными флюсами.

По технологии изготовления магниевые сплавы подразделяют на литейные (МЛ) и деформируемые (МА); по механическим свойствам-на сплавы невысокой и средней прочности, высокопрочные и жаропрочные; по склонности к упрочнению с помощью термической обработки-на сплавы, упрочняемые и неупрочняемые термической обработкой. Для повышения пластичности магниевых сплавов их производят с пониженным содержанием вредных примесей Fe, Ni, Си (повышенной чистоты). В этом случае к марке сплава добавляют строчные буквы «пч», например, МЛ5пч или МА2пч.


Способы измерения твёрдости


Под твердостью понимается способность материала противодействовать механическому проникновению в него посторонних тел. Такое определение твердости повторяет, по существу, определение свойств прочности. В материале при вдавливании в него острого предмета возникают местные пластические деформации, сопровождающиеся при дальнейшем увеличении сил местным разрушением. Поэтому показатель твердости связан с показателями прочности и пластичности и зависит от конкретных условий ведения испытания.
Наиболее широкое распространение получили пробы по Бринелю и по Роквеллу. В первом случае в поверхность исследуемой детали вдавливается стальной шарик диаметром 10 мм, во втором — алмазный острый наконечник. По обмеру полученного отпечатка судят о твердости материала. Испытательная лаборатория обычно располагает составленной путем экспериментов переводной таблицей, при помощи которой можно приближенно по показателю твердости определить предел прочности материала. Таким образом, в результате пробы на твердость удается определить прочностные показатели материала, не разрушая детали.


Стабилитроны


Полупроводниковые стабилитроны, называемые иногда опорными диодами, предназначены для стабилизации напряжений. Их работа основана на использовании явления электрического пробоя p-n-перехода при включении диода в обратном направлении.
Материалы, используемые для создания p-n-перехода стабилитронов, имеют высокую концентрацию примесей. При этом напряженность электрического поля в p-n-переходе значительно выше, чем у обычных диодов. При относительно небольших обратных напряжениях в p-n-переходе возникает сильное электрическое поле, вызывающее его электрический пробой. В этом режиме нагрев диода не носит лавинообразного характера. Поэтому электрический пробой не переходит в тепловой.
Стабилитроны

d
Стабилитроны
Стабилитроны

E
Стабилитроны
=
Стабилитроны
Стабилитроны
~
Стабилитроны



U
Стабилитроны
 - напряжение стабилизации
Стабилитроны


В качестве примера на рисунке приведены вольт-амперные характеристики стабилитрона при различных температурах, показано условное обозначение стабилитронов.


Стали, обеспечивающие жесткость, статическую и циклическую прочности


Детали машин и приборов, передающих нагрузку, должны обладать жесткостью и прочностью, достаточными для ограничения упругой и пластической деформации, при гарантированной надежности и долговечности. Из многообразия материалов в наибольшей степени этим требованиям удовлетворяют сплавы на основе железа — чугуна и особенно стали. Стали обладают высоким наследуемым от железа модулем упругости и тем самым высокой жесткостью, уступая в этом лишь бору, вольфраму, молибдену, бериллию, которые из-за высокой стоимости используются только в специальных случаях. Высокая жесткость и доступность обусловливают широкое применение сталей для изготовления строительных металлоконструкций, корпусных деталей, ходовых винтов станков, валов и многих других деталей машин.
Высокую жесткость стали сочетают с достаточной статической и циклической прочностью, значение которой можно регулировать в широком диапазоне изменением концентрации углерода, легирующих элементов и технологии термической и химико-термической обработки.
Применяемые в технике сплавы на основе меди, алюминия, магния, титана, а также пластмассы уступают стали по жесткости, прочности или надежности. Кроме комплекса этих важных для работоспособности деталей свойств, стали могут обладать и рядом других ценных качеств, делающих их универсальным материалом. При соответствующем легировании и технологии термической обработки сталь становится износостойкой, либо коррозионно-стойкой, либо жаростойкой и жаропрочной, а также приобретает особые магнитные, тепловые или упругие свойства. Стали свойственны также хорошие технологические свойства. К тому же она сравнительно недорога. Вследствие этих достоинств сталь - основной металлический материал промышленности.
 


Старение полимеров


Недостатком многих полимерных материалов, проявляющимся при эксплуатации, является изменение их размеров и свойств, называемое старением. Старение связано с физико-химическими превращениями, происходящими во многих полимерах в процессе работы, особенно при нагреве, механическом истирании, радиационном облучении и т. п.
Процессы превращения в зависимости от природы материала и действующих факторов могут быть весьма различными. Чаще всего это деструкция — реакция, протекающая с разрывом химической связи в главной цепи макромолекулы и образованием продуктов более низкого молекулярного веса. В зависимости от основной причины, вызвавшей ее, различают: термодеструкцию, механодеструкцию, фотохимическую и химическую, в частности окислительную, деструкции. Особенно склонны к процессам окислительной деструкции полиолефины.


Светодиоды


Излучающий диод, работающий в видимом диапазоне волн, часто называют светоизлучающим, или светодиодом.
Излучение возникает при протекании прямого тока диода в результате рекомбинации электронов и дырок в области p-n-перехода и в областях, примыкающих к указанной области. При рекомбинации излучаются фотоны.
Прохождение через p-n-переход тока в прямом направлении сопровождается инжекцией неосновных носителей: электронов в p-область и дырок в n-область. Инжектированные неосновные носители рекомбинируют с основными носителями данной области полупроводника и их концентрация быстро падает по мере удаления от p-n-перехода в глубь полупроводника. У многих полупроводников рекомбинация носит безызлучательный характер: энергия, выделяющаяся при рекомбинации, отдается решетке кристалла, т. е. превращается в конечном итоге в теплоту.
Светодиоды


Схематическое изображение структуры излучающего диода,  его условное графическое обозначение (КПД ~ 10-70%). InAs, Sic, GAs.


Тензорезисторы


Ряд полупроводниковых материалов достаточно резко изменяет свое электросопротивление под влиянием механических напряжений. Этот эффект называется тензорезистивным, а материалы, в которых он имеет место, — тензорезисторами. Природа тензорезистивного эффекта у разных полупроводников может быть различной. У порошковых композиций, например у авиационных угольных регуляторов напряжения и в угольных микрофонах, она обусловливается преимущественно изменением электросопротивления за счет изменения площади и качества поверхности контактов; в однородных монокристаллах — изменением ширины валентной зоны и анизотропии эффективных масс электронов при деформировании; в монокристаллах с p-n-переходами - за счет изменений ширины перехода и потенциалов на нем.
В простейшем случае этот эффект оценивается коэффициентом тензочувствительности по напряжению:
Тензорезисторы

характеризующему относительное изменение электросопротивления ?R/R0, приходящееся на единицу приложенного напряжения ?, или коэффициентом тензочувствительности по деформации:
Тензорезисторы
                               
Тензорезисторы

где ?R – изменение сопротивления; ? – механическое напряжение; ? – коэффициент тензочувствительности по напряжению; ? – механическая деформация; K – коэффициент тензочувствительности по деформации.


Теоретическая и реальная прочности кристаллов на сдвиг


Теоретическая и реальная прочности кристаллов на сдвиг

Рассмотрим кристалл
Теоретическая и реальная прочности кристаллов на сдвиг



               
Тогда общая сила
Теоретическая и реальная прочности кристаллов на сдвиг
  (где N – количество пар электронов и ионов)
 
Теоретическая и реальная прочности кристаллов на сдвиг
               a – период кристаллической решётки
Теоретическая и реальная прочности кристаллов на сдвиг

Тогда  
Теоретическая и реальная прочности кристаллов на сдвиг

Теоретическая и реальная прочности кристаллов на сдвиг

Теоретическая и реальная прочности кристаллов на сдвиг



Отсюда                                               - прочность кристалла в зависимости от периода
   кристаллической решётки
Теоретическая и реальная прочности кристаллов на сдвиг
Основным механизмом пластического течения кристаллов является сдвигообразование. Долгое время считалось, что такое сдвигообразование происходит путем жесткого смещения одной части кристалла относительно другой     одновременно   по всей плоскости    скольжения    SS.
В неискаженной решетке атомы двух соседних параллельных плоскостей занимают положения равновесия, отвечающие минимуму потенциальной энергии (рис. а). Силы взаимодействия между ними равны нулю. При постепенном смещении одной атомной плоскости относительно другой возникают касательные напряжения, препятствующие сдвигу и стремящиеся восстановить нарушенное равновесие (рис. б). Критическое  скалывающее   напряжение  должно  составлять десятую долю от модуля сдвига. В таблице приведено ?к для ряда металлических кристаллов, определенное из опыта и вычисленное теоретически. Сравнение этих величин показывает, что реальная прочность кристаллов на сдвиг на 3—4 порядка меньше теоретически вычисленной прочности этих кристаллов. Это свидетельствует о том, что сдвиг в кристаллах происходит не путем жесткого смещения атомных плоскостей друг относительно друга, а осуществляется таким механизмом, при котором в каждый момент имеет место смещение относительно малого количества атомов. Это привело к развитию дислокационной теории пластического течения кристаллов.
Теоретическая и реальная прочности кристаллов на сдвиг
?- деформация сдвига
Теоретическая и реальная прочности кристаллов на сдвиг

 - напряжение сдвига
Теоретическая и реальная прочности кристаллов на сдвиг



                                                                                                   G – модуль сдвига

Металл

?к,  10-7Па

(эксперимен-тальное)

G, 10-7 Па

?к,  10-7Па

 (теоретическое)

G/2?

G/30

Медь    
Серебро  
Никель  
Железо   
Магний  
Цинк   
Кадмий

0,10

0,06

0,58

2,90

0,08

0,09

0,06

4620

2910

7800

6900

1770

3780

2640

735

455

1240

1100

280

600

420

154

97

260

230

59

126

88



Термоэлектрогенераторы и термоэлектрохолодильники


Рассмотрим цепь из p-n-полупроводников. Пусть левые концы образцов n- и p-полупроводника находятся при температуре более высокой, чем правые. В горячей области образуются в большей концентрации электроны и дырки. Путем диффузии они стремятся распространиться по всему объему. В результате горячая часть  n-полупроводника зарядится положительно (частично ушли возбужденные электроны), а холодная - отрицательно; в р-полупроводнике горячая часть зарядится отрицательно (частично ушли возникшие дырки), а холодная — положительно.
Термоэлектрогенераторы и термоэлектрохолодильники

В цепи, соединенной последовательно из разных материалов, появляется э. д. с., если места контактов поддерживаются при разных температурах. В этом сущность термоэлектрического эффекта Зеебека, используемого в термоэлектрогенераторах (ТЭГ). При появлении тока в цепи, состоящей из различных проводников, в местах контакта в дополнение к теплоте Джоуля выделяется или поглощается в зависимости от направления тока некоторое количество тепла, пропорциональное прошедшему через контакт количеству электричества:
Термоэлектрогенераторы применяют для питания радиоаппаратуры. Так же как и термопарный эффект, эффект Пельтье в p-n-переходах проявляется более энергично, чем в металлических парах. Если в лучших устройствах из металлических пар на контактах удавалось получать перепад температур 3—5° С, то в батареях из полупроводниковых          p-n-элементов удается его довести до 60—70° С. Эффект используется для охлаждения радиоаппаратуры и ее термостатирования.
Полупроводниковые термостаты применяют для стабилизации температуры работы пьезокварцев и многих полупроводниковых радио- и вычислительных схем; холодильники - для повышения чувствительности схем с фоторезисторами.


Термореактивные полимеры


Ранее указывалось, что термореактивными являются полимеры с пространственной системой ковалентных связей. Они, как правило, более нагревостойки, тверды и хрупки, чем термопластичные полимеры. Модуль упругости у них выше, а коэффициент линейного расширения ниже, чем у термопластичных полимеров. В обычных растворителях, в которых растворяются термопластичные полимеры, они не растворимы. Термореактивные полимеры широко применяют в качестве основы пластмасс (особенно композиционных), компаундов, лакокрасочных материалов и электроизоляционных лаков, а также клеев.
Фенольноформальдегидные смолы. Бакелитовыми называются конденсационные термореактивные феноло- и крезолоформальдегидные смолы. Их изготовляют из сравнительно дешевого сырья фенола (или крезола) и формальдегида и они являются дешевой основой большого количества пластмасс, лаков и клеев. Так как бакелит хрупок, то выпускаемые на его основе пластмассы наполненные (композиционные).
Резол — наименее конденсированный продукт с линейными молекулами. Он плавится при нагревании, хорошо растворим в спирте, ацетоне, щелочах и феноле.
Резитол — продукт дальнейшей конденсации, в который переходит резол при нагреве до 90—100° С. В спирте и ацетоне он не растворяется, а лишь набухает. При обычной температуре резитол хрупок.
Резит — конечный продукт конденсации, в который переходит резол при нагреве до 150—160°С, не плавок, при 300° С он начинает обугливаться, не растворим в спирте и ацетоне и стоек по отношению к воде, бензину и маслам, серной и соляной кислотам, однако под действием азотной кислоты и щелочей разрушается. Благодаря наличию в структуре молекул групп ОН бакелит полярен и отличается в растворах высокими клеящими свойствами.
Из фенопластов, наполненных слюдяной и древесной мукой и называемых часто карболитами, изготовляют множество мелких деталей.Из более прочных пресспорошков - волокнитов с длинноволокнистыми наполнителями в виде хлопковых очесов, обрезков ткани, асбестового и стекловолокна делают более крупные детали — корпусы приборов, педали и рукоятки управления, коллекторы электрических машин, ролики тросового управления, основания печатных схем и т.
д. Изделия из фенопластов длительно нагревостойки до 120° С.

Существенные недостатки бакелитовых смол — их сравнительно низкое поверхностное сопротивление, особенно во влажной атмосфере, а также низкая стойкость против поверхностных разрядов.

Аминопласты — пресспорошки на основе карбамидофор-мальдегидных смол, наполненные чаще всего целлюлозным волокном, отличаются от фенопластов повышенной дугостойкостью. Бесцветные карбамидные смолы окрашивают в разнообразные, порой весьма яркие цвета. Недостатками аминопластов являются более высокая влагопоглощаемость, более низкая нагревостойкость, худшие технологические свойства, чем у фенопластов. Они также дороже фенопластов.

Полиэфиропласты. Важными представителями группы полиэфирных материалов с удачным сочетанием комплекса электроизоляционных, механических, химических и технологических свойств являются эпоксидные смолы.

Эпоксидные смолы получают в виде жидких, вязких или твердых продуктов в результате реакции конденсации соединений, содержащих концевые эпоксигруппы, послужившие основанием наименования этих смол. Эпоксидные смолы термопластичны и имеют ограниченное применение. Их используют присадкой к ним веществ, вызывающих необратимое отвердение, т. е. переход в термореактивное состояние за счет создания поперечных связок между молекулами.

Способность отвердевать при комнатных или невысоких температурах нагрева без выделения побочных продуктов и с малой усадкой 0,5-1% — ценное технологическое преимущество эпоксидных смол, вследствие которого они становятся незаменимыми как заливочные массы и компаунды.

Эпоксидные смолы отличаются хорошими электроизоляционными свойствами, но дугостойкость их невысока. Основное применение эпоксидных смол — изготовление компаундов, лаков, клеев, пластмасс.


Титан и сплавы на его основе


Свойства титана. Титан-металл серого цвета. Он имеет две полиморфные модификации. Полиморфное превращение (882 °С) при медленном охлаждении происходит по нормальному механизму с образованием полиэдрической структуры, а при быстром охлаждении - по мартенситному механизму с образованием игольчатой структуры.
Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим ее восстановлением из четыреххлористого титана металлическим магнием. Полученную при этом титановую губку  маркируют по твердости специально, выплавленных из нее образцов (ТГ-100, ТГ-110 и т. д.). Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.
Для уменьшения количества примесей и более равномерного их распределения по сечению слитка рекомендуется его двух-трехразовая переплавка. Характерную для титановых слитков крупнозернистую структуру измельчают путем модифицирования цирконием или бором. Полученный в результате переплава технический титан  маркируют в зависимости от содержания примесей ВТ1-00 (? примесей ? 0,398%), ВТ1-0 (? примесей ?0,55%).
Механические свойства иодидного и технического титана

Титан
Сумма
примесей, %

?0,2
?
?
HB
МПа
%
ВТ1-0 Иодидный
0,3
0,093
450-600 250-300
380-500 100-150
20-25 50-60
50
70-80
2070 1300
Отличительными особенностями титана являются хорошие механические свойства, малая плотность, высокая удельная прочность и коррозионная стойкость. Низкий модуль упругости титана, почти в 2 раза меньший, чем у железа и никеля, затрудняет изготовление жестких конструкций. Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности.
Высокая пластичность иодидного титана по сравнению с другими металлами, имеющими гексагональную кристаллическую решетку (Zn, Cd, Mg), объясняется большим количеством систем скольжения и двойникования.

Механические свойства титана сильно за висят от наличия примесей, особенно водорода, кислорода, азота и углерода, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: гидриды, оксиды, нитриды и карбиды. Небольшое количество кислорода, азота и углерода повышает твердость, временное сопротивление и предел текучести, однако при этом значительно уменьшается пластичность, снижается коррозионная стойкость, ухудшаются свариваемость, способность к пайке и штампуемость. Поэтому содержание этих примесей в титане ограничено сотыми, а иногда тысячными долями процента. Аналогичным образом, но в меньшей степени, оказывают влияние на свойства титана железо и кремний. Очень вредная примесь в титане  - водород. Присутствуя в весьма незначительном количестве, водород выделяется в виде тонких хрупких пластин гидридной фазы на границах зерен, что значительно охрупчивает титан. Водородная хрупкость наиболее опасна в сварных конструкциях из-за наличия в них внутренних напряжений. Допустимое содержание водорода в техническом титане находится в пределах 0,008-0,012%.

Технический титан хорошо обрабатывается давлением. Из него изготовляют все виды прессованного и катаного полуфабриката: листы, трубы, проволоку, поковки. Титан хорошо сваривается аргонодуговой и точечной сваркой. Сварной шов обладает хорошим сочетанием прочности и пластичности. Прочность шва составляет 90% прочности основного металла.

Титан плохо обрабатывается резанием, налипает на инструмент, в результате чего тот быстро изнашивается. Для обработки титана требуются инструменты из быстрорежущей стали и твердых сплавов, малые скорости резания при большой подаче и глубине резания, интенсивное охлаждение. К недостатку титана относятся также низкие антифрикционные свойства.

Влияние легирующих элементов на структуру и свойства титановых сплавов. Легирующие элементы по характеру влияния на полиморфные превращения титана подразделяют на три группы: ?-стабилизаторы, ?-стабилизаторы и нейтральные элементы.


Практическое значение для легирования титана имеет только алюминий, так как кислород и азот сильно охрупчивают титановые сплавы.

Алюминий - широко распространенный, доступный и дешевый металл. Введение его в титановые сплавы уменьшает их плотность и склонность к водородной хрупкости, повышает модуль упругости, прочность при 20-25°С и высоких температурах.

Добавка к сплавам титана с алюминием таких ?-стабилизаторов, как V, Mo, Mb, Mn, уменьшает склонность к образованию упорядоченной структуры (сверхструктуры). Снижая температуру полиморфного превращения титана, ?-стабилизаторы расширяют область твердых растворов на основе Ti?.


Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.


Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.



                                  [HB] = 1Па
Для стали                     
Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.
~  0,4 HB
Для бронзы, латуни    
Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.
~  0,25 HB


Углеродистые стали


На долю углеродистых сталей приходится 80% от общего объема. Это объясняется тем, что эти стали дешевы и сочетают удовлетворительные механические свойства с хорошей обрабатываемостью резанием и давлением. При одинаковом содержании углерода по обрабатываемости резанием и давлением они значительно превосходят легированные стали. Однако углеродистые стали менее технологичны при термической обработке. Из-за высокой критической скорости закалки углеродистые стали охлаждают в воде, что вызывает значительные деформации и коробление деталей. Кроме того, для получения одинаковой прочности с легированными сталями их следует подвергать отпуску при более низкой температуре, поэтому они сохраняют более высокие закалочные напряжения, снижающие конструкционную прочность.
Главный недостаток углеродистых сталей - небольшая прокаливаемость (до 12 мм), что существенно ограничивает размер деталей, упрочняемых термической обработкой. Крупные детали изготовляют из сталей без термического упрочнения. По статической прочности углеродистые стали относятся преимущественно к сталям нормальной прочности. Углеродистые конструкционные стали выпускают обыкновенного качества и качественные.


Варикапы


Варикап — это полупроводниковый прибор, предназначенный для использования в качестве управляемой электрическим напряжением емкости. Варикап работает при обратном напряжении, приложенном к p-n-переходу.
Емкость p-n-перехода диода с увеличением обратного напряжения уменьшается. Максимальная емкость варикапа в зависимости от его типа составляет 5-300 пФ. Отношение минимальной и максимальной емкостей равно 1:5. Благодаря достаточно высокой добротности варикапы используются для построения колебательных контуров с управляемой напряжением резонансной частотой в области свч.
Варикапы

Варикапы


Варикапы

С =
Варикапы
 - емкость зависит от площади         обкладок конденсатора, расстояния между ними, а также от диэлектрической проницаемости материала.


Влияние энергии химических связей на свойства материалов


Свойства материалов определяются химическим составом и внутренним строением. При одном и том же химическом составе свойства материалов могут существенно отличаться в зависимости от условий их получения и эксплуатации.
Так как любой материал представляет собой продукт взаимодействия огромного количества атомов одного или нескольких химических элементов, то его свойства прежде всего зависят от типа и энергии химической связи составляющих атомов. При любом характере химического сродства частицы тела стремятся расположиться в таком порядке и на таких расстояниях, которые обусловливают относительный минимум энергии всей системы, иными словами, ее наиболее устойчивое в данных условиях состояние. Эти равновесные расстояния между частицами обозначим R0.
При очень больших взаимных расстояниях атомы практически не взаимодействуют друг с другом, так что энергию их можно считать постоянной и равной нулю. При уменьшении расстояния между атомами проявляются силы притяжения и потенциальная энергия понижается. При некотором равновесном расстоянии R=Ro энергия W принимает минимальное значение, а результирующая сила взаимодействия F = dW/dR становится равной нулю. При дальнейшем сближении частиц возникнут силы отталкивания, так как внешние слои атомов, заряженные отрицательно, придут в тесное соприкосновение.
Влияние энергии химических связей на свойства материалов
Общая зависимость изменения энергии W и сил взаимодействия F пары частиц в молекулах  выражается кривой взаимодействия, приведенной на рисунке.
В условиях равновесия частицы располагаются в минимумах потенциальной кривой — в «потенциальных ямах». Величина Wmin характеризует энергию связи частиц, т. е. ту энергию, которую нужно затратить, чтобы разобщить структурные элементы тела. Максимум величины F представляет собой теоретическое усилие, которое может выдержать тело при упругом растяжении. Величина ?W — энергия перехода частиц из одного относительно устойчивого состояния в другое.

Знание кривых взаимодействия позволяет судить о ряде общих свойств тел и особенностях их поведения. Чем ниже расположена точка Wmin, тем выше энергия связи частиц тела, выше его температура плавления, больше модуль упругости, меньше температурный коэффициент линейного расширения и т. д. Хотя точный вид кривой взаимодействия зависит от конкретных свойств взаимодействующих частиц и от направления, в котором она исследуется, однако в общих чертах ее вид определяется типом и энергией химической связи. При воздействии на тело силовых полей частицы тела смещаются из равновесных положений. При этом могут наблюдаться три случая.

1. Ни одна частица не перемещается через вершины потенциальных кривых (не переходит через потенциальные барьеры). Тогда мы имеем дело с упругими безгистерезисными явлениями, при которых состояние системы при данном значении поля одинаково как в процессе его приложения (при возрастании напряженности поля), так и в процессе уменьшения напряженности поля.

2. Некоторые слабо связанные или все частицы силовое поле перебрасывает через потенциальные барьеры из одного относительно устойчивого состояния в другое, но после снятия внешнего воздействия под влиянием внутренних напряжений или теплового движения устанавливается статистически первоначальное состояние. Это бывает тогда, когда осуществляются переходы через потенциальные барьеры, сравниваемые по порядку со средней тепловой энергией частиц. В этом случае происходят упруго-гистерезисные процессы. Такие процессы характеризуют замкнутыми кривыми, называемыми циклами гистерезиса.

3. Если поле перемещает частицы через достаточно высокие потенциальные барьеры, то при снятии внешнего воздействия проявляется остаточный эффект. Он наблюдается при пластической деформации металлов, получении постоянных магнитов, электретов и т. д.

Если во втором или третьем случае, т. е. при переходе через потенциальные барьеры, процесс идет последовательно, то после перехода возникают «пробойные явления» — электрический ток, течение материала и т.п.


Влияние нагрева на структуру и свойства металлов


Процессы, происходящие при нагреве, подразделяют на две основные стадии: возврат и рекристаллизацию; обе стадии сопровождаются выделением теплоты и уменьшением свободной энергии. Возврат происходит при относительно низких температурах (ниже       0,3 Тпл.), рекристаллизация - при более высоких.
Возвратом называют все изменения тонкой структуры и свойств, которые не сопровождаются изменением микроструктуры деформированного металла, т. е. размер и форма зерен при возврате не изменяются.
Рекристаллизацией называют зарождение и рост новых зерен с меньшим количеством дефектов строения; в результате рекристаллизации образуются совершенно новые, чаще всего равноосные кристаллы.
Возврат, в свою очередь, подразделяют на две стадии: отдых и полигонизацию. Отдых при нагреве деформированных металлов происходит всегда, а полигонизация развивается лишь при определенных условиях.
Отдыхом холоднодеформированного металла называют стадию возврата, при которой уменьшается количество точечных дефектов, в основном вакансий; в ряде металлов, таких, как алюминий и железо, отдых включает также переползание дислокаций, которое сопровождается взаимодействием дислокаций разных знаков и приводит к заметному уменьшению их плотности. Перераспределение дислокаций сопровождается также уменьшением остаточных напряжений. Отдых уменьшает удельное электрическое сопротивление и повышает плотность металла.
Полигонизацией называют стадию возврата, при которой в пределах каждого кристалла образуются новые малоугловые границы. Границы возникают путем скольжения и переползания дислокаций; в результате кристалл разделяется на субзерна-полигоны, свободные от дислокаций.
Влияние нагрева на структуру и свойства металлов


Схема полигонизации: а, б — наклепанный металл до и после полигонизации соответственно
Полигонизация в металлах технической чистоты и в сплавах твердых растворах -наблюдается только после небольших степеней деформаций и не у всех металлов.
Так, этот процесс редко развивается в меди и ее сплавах и хорошо выражен в алюминии, железе, молибдене и их сплавах. Полигонизация холоднодеформированного металла обычно приводит к уменьшению твердости и характеристик прочности. Блочная структура, возникшая благодаря полигонизации, весьма устойчива и сохраняется почти до температуры плавления. После формирования блочной структуры рекристаллизация не наступает, полигонизация и рекристаллизация оказываются конкурентами.

Пластически деформированные металлы могут рекристаллизоваться лишь после деформации, степень которой превышает определенное критическое значение, которое называется критической степенью деформации. Если степень деформации меньше критической, то зарождения новых зерен при нагреве не происходит.

Существует также температура рекристаллизации; это наименьшая температура нагрева, обеспечивающая возможность зарождения новых зерен. Температура рекристаллизации составляет некоторую долю от температуры плавления металла:          Tрекр. =0,4Tпл. Для алюминия, меди и железа технической чистоты температурный порог рекристаллизации равен соответственно 100. 270 и 450 °С.

Влияние нагрева на структуру и свойства металлов


Схема изменения микроструктуры наклепанного металла при нагреве: а - наклепанный металл; б - начало первичной рекристаллизации; в - завершение первичной рекристаллизации; г, д - стадии собирательной рекристаллизации

Зарождение новых зерен при рекристаллизации происходит в участках с наибольшей плотностью дислокаций, обычно на границах деформированных зерен. Чем выше степень пластической деформации, тем больше возникает центров рекристаллизации. Они представляют собой субмикроскопические области с минимальным количеством точечных и линейных дефектов строения. Эти области возникают путем перераспределения и частичного уничтожения дислокаций; при этом между центром рекристаллизации и деформированной основой появляется высокоугловая граница.



С течением времени образовавшиеся центры новых зерен увеличиваются в размерах вследствие перехода атомов от деформированного окружения к более совершенной решетке; при этом большеугловые границы новых зерен перемещаются в глубь наклепанного металла.

Влияние нагрева на структуру и свойства металлов


Схемы изменения твердости (а) и пластичности (6) наклепанного металла при нагреве: I - возврат;     II - первичная     рекристаллизация; III - рост зерна

Рассмотренная стадия рекристаллизации называется первичной рекристаллизацией или рекристаллизацией обработки. Первичная рекристаллизация заканчивается при полном замещении новыми зернами всего объема деформированного металла.

По завершении первичной рекристаллизации происходит рост образовавшихся зерен при увеличении выдержки или температуры; эта стадия рекристаллизации называется собирательной рекристаллизацией. Этот процесс самопроизвольно развивается при достаточно высоких температурах в связи с тем, что укрупнение зерен приводит к уменьшению свободной энергии металла из-за уменьшения поверхностной энергии.

Рост зерен происходит в результате перехода атомов от одного зерна к соседнему через границу раздела; одни зерна при этом постепенно уменьшаются в размерах и затем исчезают, а другие становятся более крупными, поглощая соседние зерна. С повышением температуры рост зерен ускоряется. Чем выше температура нагрева, тем более крупными окажутся рекристаллизованные зерна. Первичная рекристаллизация полностью снимает наклеп, созданный при пластической деформации; металл приобретает равновесную структуру с минимальным количеством дефектов кристаллического строения. Свойства металла после рекристаллизации близки к свойствам отожженного металла.


Влияние углерода и постоянных примесей на свойства стали


Сталь — сложный по составу железоуглеродистый сплав. Кроме железа и углерода - основных компонентов, а также возможных легирующих элементов, сталь содержит некоторое количество постоянных и случайных примесей, влияющих на ее свойства.
Углерод, концентрация которого в конструкционных сталях достигает 0,8%, оказывает определяющее влияние на их свойства. Степень его влияния зависит от структурного состояния стали, ее термической обработки.
После отжига углеродистые конструкционные стали имеют ферритно-перлитную структуру, состоящую из двух фаз - феррита и цементита. Количество цементита, который отличается высокой твердостью и хрупкостью, увеличивается пропорционально концентрации углерода. В связи с этим, по мере повышения содержания углерода, увеличиваются прочность и твердость, но снижаются пластичность и вязкость стали.
Влияние углерода еще более значительно при неравновесной структуре стали. После закалки на мартенсит временное сопротивление легированных сталей интенсивно растет по мере увеличения содержания углерода и достигает максимума при 0,4%С. При большей концентрации углерода становится нестабильным из-за хрупкого разрушения стали, о чем свидетельствуют низкие значения ударной вязкости. При низком отпуске механические свойства полностью определяются концентрацией углерода в твердом растворе.
Углерод изменяет и технологические свойства стали. При увеличении его содержания снижается способность сталей деформироваться в горячем и особенно в холодном   состояниях,   затрудняется свариваемость.
Постоянные примеси в стали: марганец, кремний, сера, фосфор, а также газы: кислород, азот, водород.
Марганец - полезная примесь; вводится в сталь для раскисления и остается в ней в количестве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.
Кремний - полезная примесь; вводится в сталь в качестве активного раскислителя и остается в ней в количестве до 0,4%, оказывая упрочняющее действие.

Сера - вредная примесь, вызывающая красноломкость стали - хрупкость при горячей обработке давлением. В стали она находится в виде сульфидов. Красноломкость связана с наличием сульфидов, которые образуют с железом эвтектику, отличающуюся низкой температурой плавления (988 °С) и располагающуюся по границам зерен. При горячей деформации границы зерен оплавляются, и сталь хрупко разрушается. От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды, исключающие образование легкоплавкой эвтектики. Устраняя красноломкость, сульфиды, так же как и другие неметаллические включения (оксиды, нитриды и т. п.), служат концентраторами напряжений, снижают пластичность и вязкость стали. Содержание серы в стали строго ограничивают. Положительное влияние серы проявляется лишь в улучшении обрабатываемости резанием.

Фосфор - вредная примесь. Он растворяется в феррите, упрочняет его, но вызывает хладноломкость - снижение вязкости по мере понижения температуры. Сильное охрупчивающее действие фосфора выражается в повышении порога хладноломкости. Каждая 0,01 % Р повышает порог хладноломкости на 25 °С. Хрупкость стали, вызываемая фосфором, тем выше, чем больше в ней углерода.

Фосфор - крайне нежелательная примесь в конструкционных сталях. Однако современные методы выплавки и переплавки не обеспечивают его полного удаления. Основной путь его снижения - повышение качества шихты.

Кислород, азот и водород - вредные скрытые примеси. Их влияние наиболее сильно проявляется в снижении пластичности и повышении склонности стали к хрупкому разрушению. Кислород и азот растворяются в феррите в ничтожно малом количестве и загрязняют сталь неметаллическими включениями (оксидами, нитридами). Кислородные включения вызывают красно- и хладноломкость, снижают прочность. Повышенное содержание азота вызывает деформационное старение.

Водород находится в твердом растворе или скапливается в порах и на дислокациях.Хрупкость, обусловленная водородом, проявляется тем резче, чем выше прочность материала и меньше его растворимость в кристаллической решетке.

Случайные примеси - элементы, попадающие в сталь из вторичного сырья или руд отдельных месторождений. Из скрапа в сталь попадает сурьма, олово и ряд других цветных металлов. Сталь, выплавленная из уральских руд, содержит медь, из керченских - мышьяк. Случайные примеси в большинстве случаев оказывают отрицательное влияние на вязкость и пластичность стали.


Заполнение зон электронами. Проводники, диэлектрики и полупроводники



Каждая энергетическая зона содержит ограниченное число энергетических уровней. В соответствии с принципом Паули на каждом уровне может разместиться не более двух электронов. При ограниченном числе электронов, содержащихся в твердом теле, заполненными окажутся лишь несколько наиболее низких энергетических зон. По характеру заполнения зон электронами все тела можно разделить на две большие группы.
Заполнение зон электронами. Проводники, диэлектрики и полупроводники

К первой группе относятся тела, у которых над целиком заполненными зонами располагается зона, заполненная лишь частично (рис. а). Такая зона возникает в том случае, когда атомный уровень, из которого она образуется, заполнен в атоме не полностью. Частично заполненная зона может образоваться вследствие наложения заполненных зон на пустые или частично заполненные (рис. б). Наличие зоны,  заполненной лишь частично,  присуще металлам.
Ко второй группе относятся тела, у которых над целиком заполненными зонами располагаются пустые зоны (рис. в, г). Типичным примером таких тел являются химические элементы IV группы таблицы Менделеева — углерод в модификации алмаза, кремний, германий и серое олово, имеющее структуру алмаза. К этой же группе тел относятся многие химические соединения — окислы металлов, нитриды, карбиды, галогениды щелочных металлов и т. д. Согласно зонной теории твердых тел, электроны внешних энергетических зон имеют практически одинаковую свободу движения во всех телах независимо от того, являются они металлами или диэлектриками. Движение осуществляется путем туннельного перехода электронов от атома к атому. Несмотря на это, электрические свойства этих тел, в частности удельная электропроводность, различаются у них на много порядков.
По ширине запрещенной зоны тела второй группы условно делят на диэлектрики и полупроводники. К диэлектрикам относят тела, имеющие относительно широкую запрещенную зону. У типичных диэлектриков Eg > 3 эВ. Так, у алмаза Eg — 5,2 эВ; у нитрида бора Eg - 4,6 эВ.
К полупроводникам   относят  тела, имеющие сравнительно узкую запрещенную зону (рис. г). У типичных полупроводников Eg  < 1 эВ. Так,   у   германия Eg = 0,65 эВ;  у  кремния Eg = 1,08 эВ; у арсенида галлия Eg = 1,43 эВ

Диэлектрики:
Запрещенная зона Wg~5эВ; ?=108÷1018Ом*м;
Металлы:
Запрещенная зона Wg=0; ?=10-8÷10-6Ом*м;
Полупроводники:
Запрещенная зона Wg~1эВ; ?=10-6÷107Ом*м;




    Учет: Делопроизводство - Автоматизация - Софт