Цифровая обработка информации
Геометрические преобразования и привязка изображений
Многие задачи тематического дешифрирования сводятся к взаимному сопоставлению между собой изображений, сформированных с помощью датчиков различных физических полей. Ярким примером может служить развитие дистанционных методов контроля природных ресурсов и динамики экосистем (так называемого мониторинга), что сводится к сопоставлению снимков одной и той же территории, полученных в разное время и/или с помощью различных датчиков. Чаще всего используются оптическое, радиолокационное, радиотепловое, магнитное и другие поля. Совместное использование различных физических полей требует предварительной обработки соответствующих им изображений, например, с целью перевода изображений в одну спектральную область.На практике изображения одного и того же объекта или участка местности, полученные в разное время или с помощью различных датчиков, могут значительно различаться один от другого. Отсюда вытекает ряд важных задач привязки, а также точной взаимной геометрической и амплитудной коррекции для последующего совместного анализа.
В любом случае это требует установления соответствия между элементами исходных изображений, что сводится к выделению так называемых опорных
(по другому, реперных или сопряженных) точек на изображениях, по которым можно осуществить координатную привязку снимков с одновременной геометрической коррекцией. (Точки на двух изображениях называются сопряженными, если они являются образами одной точки сцены [5.1, гл.13]). Например, аэрокосмический компьютерный мониторинг предполагает наличие дискретного по времени наблюдения с небольшим временным интервалом, и поэтому, когда движущаяся камера фиксирует яркостный образ наблюдаемого объекта (оптическую поверхность) в виде последовательности изображений, то этот образ от снимка к снимку деформируется вследствие перспективных искажений и изменения положения камеры. Геометрия соответствующих деформаций моделируется проективными преобразованиями, которые составляют более обширный класс, нежели известные преобразования евклидовой геометрии (достаточно сказать, что длины и углы в проективной геометрии не сохраняются, а параллельные линии могут пересекаться! [5.12]).
Восстановление пространственного рельефа по стереоснимкам приводит к проблеме идентификации: установления точного координатного (поточечного) соответствия элементов стереоизображений. Решение этой задачи состоит в выделении пар реперных фрагментов и оценивании параметров «расхождения» соответственных точек (это именуется в стереофотограмметрии бинокулярной диспарантностью), по которым можно восстановить функцию геометрического преобразования и оценить поверхность трехмерной сцены (рельеф)[5.5].
5.1. Геометрические преобразования на плоскости и в пространстве
Геометрия является математическим базисом для решения многих задач машинного зрения и обработки изображений и содержит множество подобластей. Здесь мы рассмотрим лишь некоторые в охарактеризованном выше контексте привязки, преобразования и совмещения разновременных изображений одного и того же объекта.
При изучении геометрических преобразований плоских изображений (то есть относящихся к двумерному случаю - 2D), будем предполагать, что мы работаем в евклидовом пространстве, где имеется ортонормированная декартова система координат, в которой координатные оси взаимно ортогональны, а соответствующие им единичные отрезки имеют одинаковую длину. Тогда каждой точке изображения ставится в соответствие упорядоченная пара чисел




Двумерные преобразования на плоскости мы будем интерпретировать как движения точек по отношению к фиксированному базису (а не как изменение базиса, оставляющее точки неподвижными).
В частности, нас особенно будут интересовать линейные преобразования, представляемые матрицами, то есть преобразования, при которых новые координаты точки линейно зависят от старых координат этой точки следующим образом:

Линейные преобразования могут быть различного типа, начиная от общего случая произвольных элементов матрицы


Это является следствием того, что евклидова геометрия (также как и аффинная) в действительности является подмножеством выше упомянутой нами проективной геометрии.
5.1.1. Точки и прямые линии на плоскости - двойственность описаний
Прямая линия на плоскости, как известно из аналитической геометрии, состоит из всех точек, удовлетворяющих уравнению

Пусть две точки имеют координаты




Данную систему из двух уравнений можно легко разрешить относительно неизвестных значений



С другой стороны, предположим, что имеются две линии, и нужно найти их точку пересечения



Отсюда для координат точки пересечения



Здесь просматривается очень важная симметрия или двойственность
между проблемами пересечения двух прямых и (с другой стороны) линии, проходящей через две заданные точки. Координаты (параметры) пары линий и координаты пары точек в обоих случаях входят в формулы одинаковым образом. Далее мы увидим, что отмеченная двойственность распространяется и на другие соотношения между геометрическими объектами.
Имеется ряд проблем, связанных со специальными соотношениями выделенных пар точек и прямых. Предположим, что координаты двух точек отличаются лишь скалярным множителем:



5.1.2. Однородные координаты
Для преодоления отмеченных проблем описания геометрических объектов, а также для решения задач преобразования 3D-пространства и 2D-плоскости в единообразном (матричном) виде вводится формализм так называемых однородных координат. Однородными координатами служат тройки чисел




Поскольку скалярный множитель



Видно, что, как и для двух точек, однородные координаты двух линий эквивалентны, если отличаются лишь общим скалярным множителем. Однородные точки




Таким образом, точки и линии имеют здесь одинаковые представления. Нетрудно заметить, что прямым, проходящим через начало в данном представлении соответствует значение


5.1.3. Евклидовы преобразования
Сцену иногда можно рассматривать как твердое тело, когда взаимные деформации элементов сцены в трехмерном пространстве не допускаются. Аналогично и плоскость иногда можно считать жесткой (недеформируемой). Жестким движениям плоскости соответствует евклидова подгруппа, содержащая лишь преобразования сдвига и поворота (рис.5.1), математически записываемых в векторно-матричной форме как

с матрицей поворота на угол



При помощи троек однородных координат и матриц третьего порядка можно описать любое линейное преобразование плоскости. Действительно, введением дополнительной единичной компоненты уравнение (5.2) можно переписать следующим образом:

Отметим далее, что два последовательно проведенные жесткие движения плоскости могут быть представлены единственным движением:

Рис.5.1. Действие евклидова преобразования на пять точек плоскости
(сдвиг, поворот)

Комбинация двух последовательных вращений








5.1.4. Аффинные преобразования
Если матрицу вращения в (5.2) заменить общей невырожденной матрицей


или, в матричном виде


а)


б)
Рис.5.2.
а) действие аффинного преобразования на пять точек (сдвиг, поворот, изменение масштабов вдоль осей, косоугольность с сохранением параллельных линий);
б) исходное изображение (слева) и его аффинно-преобразованная копия (справа);параметры аффинного преобразования:

и в однородных координатах

Здесь также предполагается, что определитель матрицы преобразования не равен нулю:

Уравнения (5.5),(5.6) определяют общую форму записи хорошо известного аффинного преобразования (смотрите рис.5.2). Любое аффинное преобразование имеет обратное, которое также является аффинным. Произведение прямого и обратного преобразований дает единичное преобразование, оставляющее все на месте. Аффинное преобразование является самым общим взаимно однозначным отображением плоскости на плоскость, при котором сохраняются прямые линии. Сохраняются также отношения длин отрезков, лежащих на одной прямой (или на параллельных прямых), и отношения площадей фигур. Параллельные прямые переходят в параллельные.
В аффинных преобразованиях плоскости особую роль играют несколько важных частных случаев, имеющих простой и наглядный геометрический смысл, а также хорошо прослеживаемые геометрические характеристики [5.4,гл.15].
1.Растяжение (сжатие)
вдоль координатных осей, задаваемое в виде:

Растяжению вдоль соответствующей оси соответствует значение масштабного множителя большего единицы. В однородных координатах матрица растяжения (сжатия) имеет вид

2.Поворот вокруг начальной точки на угол


Матрица вращения (для однородных координат)

3.Перенос, задаваемый простейшими соотношениями:

Матрица переноса имеет вид

4.Отражение (относительно какой либо из осей, например оси абсцисс) задается при помощи формулы:

Матрица отражения, соответственно

Из курса аналитической геометрии хорошо известно, что любое аффинное преобразование (5.5) всегда можно представить в виде композиции последовательно выполняемых простейших преобразований означенного вида. Более того, суперпозиция аффинных преобразований также является аффинным преобразованием. Ясно, что аффинные преобразования образуют аффинную группу. В частности подгруппой аффинной группы преобразований является группа подобия (содержащая преобразования сдвига, поворота и изменения масштаба):

В то же время аффинная группа является подгруппой общей линейной (проективной) группы, а евклидова группа является частным случаем аффинной группы преобразований. Поэтому все отмеченные преобразования формируют иерархию в том смысле, что верно соотношение для их взаимной соподчиненности
евклидово преобразование


Зная параметры аффинного преобразования, можно вычислить непосредственно и параметры обратного преобразования

решив систему уравнений (5.5) относительно


Если параметры таковы, что



Заметим, что при

5.1.5. Проективные преобразования
Как выше уже было сказано, общими линейными преобразованиями


формируется группа проективных преобразований (рис.5.3). При представлении в обычных координатах, очевидно соотношение (5.7) будет иметь нелинейный вид, связанный с перенормировкой

Проективные преобразования, в общем-то, не сохраняют параллельности линий. Свойством, сохраняющимся при проективном преобразовании, является так называемая коллинеарность точек: три точки, лежащие на одной прямой (то есть коллинеарные), после преобразования остаются лежать на одной прямой(см.рис.5.3). Поэтому обратимое проективное преобразование принято называть еще
коллинеацией.
Проективное преобразование связано с отображением трехмерной визуальной информации на двумерную плоскость. С математической точки зрения удобно рассматривать мир, включенным в трехмерное проективное пространство


Проективное преобразование из








а)

б)
![]() |
![]() |
|
в) |
г) |
а) действие проективного преобразования на пять точек плоскости;
б) исходное изображение; в) и г) проективно преобразованные образы; параметры проективного преобразования соответственно:

и

Однородные координаты векторов проективного пространства







Проективная геометрия составляет математический базис машинного зрения и компьютерной графики. Основные области применения связаны с описанием как процесса формирования изображений, так и их инвариантного представления , а именно: калибровка регистрирующей камеры, анализ движения по серии изображений, распознавание образов, реконструкция сцен по стереоснимкам, синтез изображений, анализ и восстановление формы по полутонам. Полезно отметить тот факт, что композиция двух перспективных проекций не является с необходимостью перспективной проекцией, но определяет проективное преобразование; то есть (как мы знаем) проективные преобразования формируют группу, в то время как перспективные проекции - нет.
В связи с этим напомним, что изображение объектов на снимке, сформированном регистрирующей камерой, связано с чрезвычайно важной геометрической операцией - проектированием при помощи пучка прямых, поскольку каждая 2D точка является проекцией множества 3D точек вдоль некоторого направления («луча проектирования») в плоскость снимка (рис.5.4). Предположим, что плоскость снимка камеры в системе координат


что если расстояние от плоскости изображения до центра проекции равно




Это нелинейные уравнения. Они могут быть сделаны линейными введением однородных координат.
Заметим, что луч, проходящий через 2D точку















Рис.5.4. Перспективная проекция

Замечание. При





Мы можем добавить все такие точки к проективной плоскости. Эти точки называются «идеальными» или точками на бесконечности. На изображениях проективной плоскости добавленные точки на бесконечности формируют «линию горизонта» (см. рис.5.5). Существует разделение идеальных точек, обусловленное различными направлениями на плоскости; например, точки (1,0,0) и (0,1,0) связаны с горизонтальным и вертикальным направлениями (осями координат) соответственно. Можно также сказать, что все идеальные точки лежат на линии, называемой «идеальной линией» или линией на бесконечности, которая рассматривается, тем не менее, как и обычная линия.
Идеальная линия представляется в виде (0,0,1).
Определение. Проективная плоскость


Рис.5.5. Проективная плоскость = аффинная плоскость + идеальные точки
(идеальная линия)
Замечание. Найдем пересечение двух прямых










Таким образом, идеализация процесса формирования изображения камерой может быть представлена как перспективная проекция из






Очевидно, что неизвестный масштабный множитель определяется как

так что координаты изображения объекта имеют вид отношения

(5.11)

Пусть координаты характерных элементов изображения объекта





Обычно же требуется большее число точек, так как измерения сопровождаются помехами и оптимальное решение, минимизирущее их влияние на результат, находится методом наименьших квадратов.
Проективным базисом на плоскости








Элементы



Мы знаем, что аффинная плоскость, в отличие от проективной плоскости, не содержит идеальных точек. Тогда точка




что влечет


5.1.6. Полиномиальное преобразование
Выше мы привлекли к рассмотрению геометрических преобразований, в общем-то, идеализированную модель камеры. В действительности формирование изображений сопровождается различного рода нелинейными искажениями (типа оптической дисторсии линзы). Приведение текущих снимков друг к другу или к некоторому эталонному в таком случае можно осуществить лишь нелинейной функцией преобразования. Кроме того, неравномерность движения носителя регистрирующей камеры также приводит к тому, что на практике геометрические искажения снимков не устраняются аффинным преобразованием координат элементов снимка.
Поэтому привлекают полиномиальную аппроксимирующую функцию преобразования (рис.5.6)


где




Рис.5.6. Действие билинейного геометрического преобразования на исходный снимок; параметры преобразования:

5.1.7. Оценивание параметров преобразования
Параметры линейных и нелинейных преобразований (5.2),(5.5),(5.12) устанавливаются по парам взаимно соответствующих реперных точек, идентифицируемых в процессе поиска (см. далее). После этого каждой точке










Аналогично коэффициенты полиномов можно представить в векторной форме


Среднеквадратическую ошибку оценивания можно записать в компактной матричной форме

где

Оценки наименьших квадратов (минимизирующих среднеквадратическую ошибку





Следовательно, искомые оценки имеют вид


При больших значениях




где



Коэффициенты




Пользуясь этой методикой, можно без труда вычислить коэффициенты


5.2. Восстановление изображения в преобразованных
координатах
После оценивания параметров геометрического преобразования встает задача собственно геометрической коррекции или, по другому, восстановления изображения в преобразованных координатах.
Будем считать, что заданы два снимка (



Рис.5.7. Вычисленные координаты

освещенности. Вследствие этого изображения на снимках отличаются друг от друга геометрическими искажениями. Будем также считать, что на изображениях выделены сопряженные точки, по которым произведено оценивание параметров геометрического преобразования. Зная коэффициенты линейного (или полиномиального) преобразования, можно вычислить в плоскости корректируемого изображения




Восстановив уровни яркости наблюдаемых элементов в вычисленных точках на корректируемом снимке, то есть осуществив «передискретизацию», полученные значения также можно поместить на дискретном растре размером






где



Интерполяционное ядро имеет значительное влияние на численное поведение интерполированных функций. Теоретически оптимальную интерполяцию обеспечивает известная sinc-функция, в одномерном случае имеющая вид

где



Поскольку интерполяция противоположна дискретизации, то интерполирующая функция (5.20) по - существу является идеальным низкочастотным фильтром, вырезающим основной участок ограниченного спектра из множества его повторяющихся копий. Однако этот теоретический метод практически невозможно реализовать в контексте обработки изображений. В частности, ограничение области суммирования в (5.19) приводит к тому, что осцилляции, известные как феномен Гиббса, будут проникать в восстанавливаемый образ

В одномерном случае это прямоугольные, треугольные, B-сплайн функции и т.п. [5.2, разд.4.3]. При выборе соответствующего ядра исходят из соображений как необходимой точности интерполяции, так и вычислительной эффективности. Понятно, что здесь одномерные функции должны быть преобразованы в двумерные функции. Общий подход состоит во введении так называемых «сепарабельных» интерполяционных функций в виде произведения двух одномерных функций. Сепарабельность во многих отношениях достаточно привлекательна в приложениях хотя и влечет неизотропность (за исключением гауссовых функций). Однако данные на квадратной решетке дискретизованы также не изотропно.
С вычислительной точки зрения предпочтителен алгоритм, известный как интерполятор по ближайшему соседу, где значение в точке








Рис.5.8. Интерполятор по ближайшему соседу с прямоугольным ядром. Справа график модуля Фурье-образа ядра. Пунктирной линией показан идеальный низкочастотный фильтр с частотой среза


Рис.5.9. Линейная интерполяционная функция и модуль ее Фурье-образа
(на правом рисунке пунктиром отмечен идеальный низкочастотный фильтр)
Здесь интерполированный сигнал представляется в виде

где

Приближение к низкочастотному фильтру здесь еще далеко от идеального, и к тому же производная интерполированного сигнала терпит разрывы в узлах интерполяции (тем не менее формула (5.21) часто применяется на практике, поскольку удовлетворяет одновременно требованиям приемлемой точности и приемлемым затратам вычислительных ресурсов).
Наиболее подходящим для интерполяции изображений является кубический B-сплайн (рис.5.10), поскольку в результате его применения получается функция, непрерывная и гладкая в узлах интерполяции. Ядро кубической свертки составляется из кусков кубических полиномов, определенных на подинтервалах (-2,-1), (-1,0), (0,1), (1,2) по каждой из координат. Вне интервала (-2,2) интерполяционное ядро равно нулю. Двумерный кубический B-сплайн может быть записан как произведение двух одномерных интерполяционных функций по каждой из координат



и

Как показали непосредственные исследования, кубический B-сплайн имеет тенденцию к сглаживанию передискретизованного изображения по сравнению с его первоначальной копией. Поэтому были предприняты определенные усилия для выбора кубического сплайна, более подходящего задачам обработки изображений. Общий кубический сплайн задается в виде


Рис.5.10. Кубический B-сплайн и модуль его Фурье-образа.
Имеется несколько естественных ограничений на данное интерполяционное ядро. Так, требуется чтобы значение интерполирующей функции в нуле было равно 1, а в точках с координатами 1 и 2 равно 0. Кроме того, необходимо, чтобы ядро было непрерывным в точках 0 и 1, чтобы наклон в точках 0 и 2 был равен 0, и первая производная была непрерывной. В совокупности это дает семь ограничений, в то время как неизвестных параметров восемь и, следовательно, нужно еще одно условие для однозначного определения интерполяционного ядра. В частности, если интерполяционную функцию привести в соответствие с первыми тремя членами ее разложения в ряд Тейлора, тогда неизвестный параметр




Когда константа




в пределах от -1 (рис.5.11.а) до -1/2 (рис.5.11.б), в каждом конкретном случае можно добиться приемлемой точности при передискретизации.

а)

б)
Рис.5.11. Высокоразрешающий интерполяционный кубический сплайн и его частотная характеристика :
a) - a=-1; б) - а= - 0.5
5.3. Привязка изображений
В практике обработки изображений задача поиска соответствия получила большое распространение и известна как проблема «поиска по образцу». Формально ее можно рассматривать как процесс отождествления эталонного изображения (образа фрагмента) на первом снимке с одним из множества образов фрагментов, лежащих в некоторой (задаваемой) области (зоне поиска) второго снимка . Алгоритмы установления сходства в своих основополагающих вариантах в той или иной степени связаны с получением характеристик стохастической взаимосвязи сравниваемых фрагментов изображений [5.2, гл.19]. Все они основываются на идеях корреляционной и спектральной теории сигналов, и для соответствующих критериев получены экспериментальные характеристики основных процедур поиска по образцу.
5.3.1. Корреляционный критерий сходства
Будем считать, что изображение эталонного фрагмента (выбранного на снимке A и представляемого матрицей









В процессе скользящего поиска ( когда каждый очередной фрагмент получается из предыдущего простым сдвигом на один дискрет) вычисляется «функция сходства» между изображением эталонного фрагмента


Взаимно соответствующие элементы изображений одного объекта на снимках должны, очевидно, удовлетворять соотношению

где




В такой формулировке процедура селекции образца должна найти параметры k и l, характеризующие сдвиг реперных фрагментов.
Ради простоты будем считать, что параметр



В качестве меры различия в точке


которая минимизируется перебором всех допускаемых сдвигов эталона по заданной области контролируемого снимка. Считается, что в точке экстремума реализуется сходство, если





Первый член выражения (5.27) - «энергия» эталонного сигнала, является величиной постоянной, не зависящей от параметров сдвига


и вместо минимума нормированной среднеквадратичной ошибки будем искать максимум коэффициента корреляции текущего фрагмента с эталоном


Соблюдение условий достоверности обнаружения также приводит к необходимости установления порога для величины взаимной корреляции


Функционирование данного (по существу классического) алгоритма при наличии искажений в изображениях рассмотрено в работе [5.9]. Различия между эталонным и текущим (









Было практически продемонстрировано, что серьезным недостатком корреляционной меры сходства является ее чувствительность к геометрическим искажениям видимых размеров сопряженных фрагментов при изменении ракурса съемки.
Обычно в качестве критериев эффективности процедур идентификации сходства принимается точность совмещения фрагментов и вероятность ложной привязки, когда экстремум функционала сходства значимо смещен относительно истинного положения. Анализ результатов имитационных экспериментов позволил сделать следующие выводы .
1. При наличии геометрических искажений существует оптимальный размер фрагмента эталонного изображения, позволяющий минимизировать вероятность ложной привязки. Оптимальный размер фрагмента пропорционален эффективному радиусу корреляции (полуширине графика автокорреляционной функции) и уменьшается с увеличением геометрических искажений.
2. При заданном уровне искажений размер эталонного изображения, при котором погрешность совмещения минимальна, меньше, чем размер изображения, необходимый для минимизации вероятности ложной привязки.
Здесь можно порекомендовать использовать полезную модификацию метода идентификации сходства, заключающуюся в том, что искажения геометрии на втором снимке (относительно первого) предварительно компенсируются аффинной (или полиномиальной) "подгонкой". Например, параметры аффинного преобразования



можно оценивать адаптивно (в несколько "проходов"), когда на первом этапе задается достаточно большая зона поиска по образцу, что позволяет на искаженном (по отношению к исходному) снимке находить сопряженные точки. Даже трех пар опорных точек достаточно, чтобы оценить (в первом приближении) параметры аффинного преобразования и осуществить аффинную подгонку геометрии изображения





Поиск по образцу в данном методе сводится к вычислению нормированной взаимной корреляции распределения яркости (двумерного сигнала) на текущем фрагменте первого снимка с распределениями яркостей фрагментов, лежащих в некоторой предполагаемой окрестности образа этого фрагмента на аффинно-преобразованном втором снимке и определению целочисленных параметров взаимного смещения исходного фрагмента и его образа, устанавливаемого по экстремуму корреляционного функционала.
5.3.2. Локальное уточнение сдвига
После определения целочисленных параметров смещения чаще всего требуется локальное уточнение сдвига фрагментов в пределах дискрета (шага целочисленной решетки) [5.8, гл.15].
Чтобы найти соответствующий вектор сдвига




(первые производные в точке экстремума равны нулю). Дифференцируя данное выражение, непосредственно получаем


В результате приходим к матричному уравнению для параметров


Таким образом, в результате всех вычислений, проведенных над элементами изображений пары снимков, координаты пар сопряженных точек



5.3.3. Кросс-спектральная мера сходства
Здесь мы разовьем далее охарактеризованный метод решения задачи привязки. Для этого будем исходить из исследования обобщенной кросс-спектральной меры сходства. Для единообразия запишем матрицу эталонного фрагмента в левом верхнем углу нулевой матрицы порядка





Поскольку при смещении «образца»




по параметрам сдвига






Точность локализации определяется крутизной данной кросс-спектральной функции вблизи экстремума, характеризующего положение образа эталонного фрагмента. С этой точки зрения наилучшей моделью для




так как в этом случае обратное дискретное фурье-преобразование

Полученный результат можно интерпретировать следующим образом. Обнаружитель с передаточной функцией (5.34) представляет собой «фазовый» фильтр, т.е. фильтр, который фазовую часть комплексного спектра изображений оставляет без изменений, а амплитудный спектр нормализует. Нетрудно усмотреть, что в данном варианте кросс-спектральная мера


Тем самым можно отнести все признаки оптимальности когерентного функционала [5.6] и к кросс-спектральной мере сходства, допускающей к тому же эффективную реализацию на основе быстрого преобразования Фурье.

a) б)
Рис.5.12. Меры эффективности алгоритмов идентификации сходства:
а - поведение кросс-спектральной меры сходства вблизи ее экстремума: 1 - отклик фазового фильтра, 2 - отклик корреляционного обнаружителя;
б - оценки вероятностей ложной привязки (ВЛП) в зависимости от отношения амплитуды шума

Следует отметить, что выражение (5.33) при

Анализ результатов имитационных экспериментов показал [5.7], что аналогичные выводы справедливы и для когерентного (фазового) алгоритма. Однако рабочая зона идентификации фазового фильтра (по величине допустимых геометрических искажений) меньше аналогичной зоны для корреляционного алгоритма. Это и понятно, так как чем меньше эффективный радиус кросскорреляционной функции сходства




Видно, что фазовый фильтр в достаточно широком диапазоне мощностей помехи (до 55%) имеет меньшую вероятность ложной привязки фрагментов, нежели классический корреляционный алгоритм. Для иллюстрации изложенных методов здесь представлен результат привязки радиолокационных снимков.


Рис.5.13.Радиолокационные изображения местности, снятые при двух пролетах самолета (разные ракурсы съемки)
5.3.4. Привязка по локальным неоднородностям
Если в некоторой части изображения уровень яркости более или менее постоянен или на одном из снимков искажен инородными включениями, то сопряженные точки искать достаточно трудно. Кросс-корреляционные методы, использующие фрагменты меньшие, чем данная область однородной яркости, не дадут ярко выраженного максимума, либо максимум не превысит заданный пороговый уровень.


Рис.5.14. Результаты привязки изображений
На левом снимке рис. 5.14 большие светлые рамки соответствуют зонам поиска для правого снимка рис.5.13, малые рамки характеризуют размер эталонных фрагментов, выбираемых на левом снимке рис.5.13 (по изображениям соответствующих фрагментов вычислялась кросс-спектральная мера сходства). Смещение малых рамок от центра больших рамок указывает на величину найденных локальных геометрических деформаций между снимками. Правый снимок соответствует правому снимку на рис.5.13, геометрически преобразованному в формат левого снимка (полиномиальное преобразование третьей степени с параметрами, оценки которых мало отличаются от аффинного преобразования; передискретизация осуществлялась на основе высокоразрешающей бикубической сплайн-интерполяции) .Это достаточно хорошо видно на рис.5.14, где рамками обозначены фрагменты, для которых взаимная мера сходства между изображениями находится в доверительном интервале. В то же время в большей части областей снимков критерий сходства не регистрировал действительного сходства в выбранных фрагментах зоны поиска. Поэтому может оказаться более разумным осуществлять поиск реперных фрагментов только в информационно - насыщенных областях, где яркость быстро меняется, например, на краях между более или менее однородными областями.
Выделение краев [5.2, гл.17] можно рассматривать как средство быстрого предварительного просмотра эталонного изображения и отбора информативных областей. В полученных областях далее выбираются эталонные реперные фрагменты и осуществляется поиск корреляционными методами соответствующих им фрагментов на контролируемых изображениях. В этом случае привязка будет осуществляться по заведомо информативным областям, что повышает точность локализации сопряженных точек и уменьшает вероятность ложного отождествления.
ВОПРОСЫ К ГЛАВЕ 5
5.1. Охарактеризуйте круг проблем, решение которых приводит к привязке последовательности изображений и их взаимной геометрической коррекции.
5.2. Выстройте иерархию геометрических преобразований. Какие из них сохраняют параллельность прямых?
5.3. Постройте матрицу поворота (в однородных координатах) вокруг точки плоскости


5.4. Чем отличается аффинная плоскость от евклидовой плоскости и от проективной плоскости?
5.5. В каких ситуациях рекомендуется применять полиномиальную аппроксимацию (в том числе и полиномы Чебышева) для описания геометрических деформаций?
5.6. Опишите процедуру восстановления изображения в преобразованных координатах. Какие используются методы интерполяции и в чем их различие?
5.7. Назовите меры сходства изображений и охарактеризуйте их относительные свойства (смысл их оптимальности, точность локализации, достоверность, устойчивость к геометрическим деформациям).
5.8. Опишите процедуру привязки изображений и методы ее ускорения.
Фотограмметрия и стереовидение
Среди них - школы в области цифровой обработки изображений Самарского государственного аэрокосмического университета под руководством В.А. Сойфера и В.В. Сергеева и Ульяновского технического университета под руководством К.К. Васильева. Авторы выражают им свою признательность за то сотрудничество, к числу результатов которого относится и данное учебное пособие.
В обычном изображении трехмерного пространства информация о расстоянии до различных элементов сцены проявляется только в виде косвенных признаков: через относительные размеры объектов, затенение одних объектов другими, различной освещенностью и т.д. Один из способов получения информации о глубине состоит в регистрации нескольких изображений сцены под различными ракурсами. В этом случае точки сцены дают изображения, относительное положение которых зависит от расстояния до точки наблюдения. Оказывается, сопоставляя эти изображения, в ряде случаев можно реконструировать трехмерную структуру сцены. Основы теории определения положения объектов в пространстве по их перспективным изображениям были положены еще в средние века, а в XVIII веке перспективные рисунки стали использоваться в топографических целях. Появление фотографии положило начало фотограмметрии – науке об определении формы, размеров и пространственного положения различных объектов посредством измерения их фотографических изображений. В начале XX века был изобретен стереокомпаратор – прибор для измерения пространственного положения объектов по паре перекрывающихся фотографических изображений. Интерес к методам восстановления трехмерной структуры сцен по их плоским изображениям возобновился в середине XX столетия в связи с исследованиями в области искусственного интеллекта, а практическая потребность в робототехнических устройствах, способных ориентироваться в трехмерном пространстве, постоянно поддерживает этот интерес в последние десятилетия.
В этой главе мы рассмотрим процесс формирования изображений, соотношения между координатами точек сцены и их изображениями и методы оценивания параметров системы регистрации и трехмерной структуры сцены.
6.1. Модель регистрирующей камеры
Строго говоря, различные точки пространства предметов отображаются оптической системой камеры в пространстве изображений на различных расстояниях от фокальной плоскости. Однако, если расстояние между камерой и наблюдаемой сценой значительно превышает фокусное расстояние оптической системы, можно считать, что изображение строится в ее фокальной плоскости. В этом случае можно воспользоваться проективной моделью камеры, в которой изображение трехмерного объекта получается проектированием его в фокальную плоскость (плоскость изображения) через единственную точку, называемую оптическим центром. Прямая линия, перпендикулярная плоскости изображения и проходящая через эту точку, называется оптической осью камеры, а точка пересечения оптической оси с плоскостью изображения – главной точкой.
Определим в трехмерном пространстве ортогональную правую систему координат OXYZ, начало которой совпадает с оптическим центром, ось OZ - с оптической осью камеры. Такая система называется стандартной системой координат камеры. Пусть плоскость изображения находится на расстоянии








Рис.6.1. Система координат проективной камеры
Для полного описания камеры следует учесть, что для регистрации изображения в плоскости изображения камеры помещается какой-либо фотоприемник. В фотокамере это фотопластинка или фотопленка, в видеокамеру это видикон или фотоприемная полупроводниковая матрица, в некоторых специальных камерах – электромеханический сканер. В общем случае измерение координат в фотоприемнике осуществляется в единицах, отличных от единиц, задающих координаты в стандартной системе.
Например, если используется матричный фотоприемник, его естественными координатами являются номер строки и номер столбца фотоприемной ячейки. Поэтому для полного описания камеры необходимо выразить координаты точки



где



В новой системе координаты проекции точки



Для последующего изложения введем трехмерный вектор






где

6.2. Связь между различными системами координат
В общем случае трехмерные координаты точки могут быть заданы в системе, не совпадающей со стандартной системой координат камеры (назовем ее глобальной). Пусть OXYZ – глобальная система координат, а





где







Рис.6.2. Переход от глобальной системы координат к стандартной системе координат камеры.
На рис. 6.2. схематически показано преобразование координат. Здесь











Особенность матрицы










Уравнения (6.4) являются условиями взаимной ортогональности векторов






Верхний знак соответствует случаю, когда матрица

Смысл вектора

6.3. Стереоскопическая система
Рассмотрим ситуацию, когда две камеры, находящиеся в разных точках, регистрируют одну и ту же сцену. Пара изображений, получаемых при этом, называется стереопарой. Обратимся сначала к простейшему случаю. Пусть одинаковые камеры расположены так, что их оптические оси параллельны, а прямая, проходящая через оптические центры, перпендикулярна оптическим осям (эта прямая называется базовой линией, а ее отрезок, заключенный между оптическими центрами – базой). Положим длину базы равной

Выберем такую глобальную систему координат, начало которой





Выберем точку








Заметим, что в направлении, перпендикулярном направлению базовой линии, координаты сопряженных точек (



Рис.6.3. Простейшая стереоскопическая система
Это означает, что, зная геометрию съемки и выполнив измерения координат проекций одной и той же точки в плоскостях изображения камер, можно вычислить глубину (координату



Разность

Теперь рассмотрим общий случай, когда оптические оси камер не параллельны, и направление смещения оптического центра одной камеры относительно оптического центра другой произвольно (рис.6.4). Введем для каждой камеры свою стандартную систему координат, так как это было сделано в разделе 6.1. Пусть первой камере соответствует система координат










где





Рис.6.4. Система двух произвольно ориентированных камер
Используя (6.2) из (6.8) можно получить соотношение, связывающее координаты сопряженных точек (в координатах фотоприемника) :

где



(Предполагается, что регистрация может выполняться двумя различными камерами, внутренние параметры которых определяются матрицами


Уравнения (6.8) и (6.2) позволяют оценить трехмерные координаты точки






где

Учитывая это, для оценивания неизвестных









разрешая которую относительно



Теперь, используя (6.2), можно вычислить вектор трехмерных координат точки



Из всего изложенного выше следует, что для оценивания трехмерных координат некоторой точки по стереопаре необходимо: а) знать внутренние параметры камер (задача калибровки), б) знать параметры взаимного расположения камер (задача взаимного ориентирования), в) найти и определить на изображениях координаты соответствующих данной точке сопряженных точек (задача поиска сопряженных точек).
6.4. Калибровка камеры
Заметим сразу, что поскольку фокусное расстояние








Пусть камера регистрирует сцену, содержащую





Если положение камеры относительно этой системы известно (т.е. известны матрица








Для








где






Очевидно, достаточно двух опорных точек, чтобы получить оценки внутренних параметров камеры:




Обратим внимание на необходимость выполнения условий


Для увеличения точности оценок внутренних параметров следует использовать большее количество опорных точек. Системы (6.13) в этом случае становятся переопределенными, и для их решения можно применить МНК. Минимизируя норму вектора невязки



Рассмотрим теперь задачу калибровки в более общей постановке. Пусть неизвестны не только матрица






Матрица








Отметим два важных свойства этой матрицы, которые легко получить из (6.15), учитывая (6.4) и (6.5):


Оказывается, что если элементы калибровочной матрицы








Кроме того, непосредственно из (6.14) следует, что






Задача калибровки, следовательно, сводится к предварительному оцениванию элементов матрицы

Рассмотрим сначала линейный метод оценивания матрицы




или, подставляя в два первых уравнения значение



Зная координаты






Представим эту систему в матрично-векторном виде:

где



Сначала рассмотрим некоторые общие особенности этой системы. Очевидно, что одним из решений этой системы является тривиальное




Первый – когда ранг матрицы






Знак


Второй случай реализуется, если ранг



Рис.6.5. Калибровочный объект
Рассмотрим теперь непосредственно метод решения системы (6.20). Обычно, чтобы уменьшить влияние ошибок измерений трехмерных координат опорных точек и координат их изображений в камере, используют больше, чем шесть опорных точек. Тогда система (6.20) становится переопределенной. Кроме того, как и в разделе 6.2, из-за ошибок в измерениях координат реально система (6.20) принимает вид

где

В этой ситуации можно снова воспользоваться МНК, согласно которому в качестве оценки вектора
















Другой подход к оцениванию матрицы


которая представляет сумму квадратов этих расстояний, и минимизируем ее по

Решить эту задачу можно посредством методов условной минимизации [6.5, гл.VI], изложение которых выходит за рамки данного учебника. Следует отметить только, что такой подход обычно дает результаты оценивания, более устойчивые к ошибкам измерений, чем рассмотренный выше линейный.
6.5. Взаимное ориентирование
В предыдущем параграфе показано, как с помощью тестовой сцены не только оценить внутренние параметры камеры, но и определить ее положение относительно системы координат, в которой задана тестовая сцена. Последнее позволяет нам, откалибровав две камеры по одной тестовой сцене, определить их взаимное положение (см. (6.8)). Однако если внутренние параметры камер определены их конструкцией и могут считаться постоянными, то взаимное положение камер во многих практических случаях может изменяться в процессе регистрации сцены. В связи с этим возникает задача взаимного ориентирования, не предполагающая наличия тестовой сцены.
Рассмотрим снова пару камер, внутренние параметры которых известны, но неизвестны внешние параметры (матрица






Это соотношение формально выражает тот факт, что векторы









или, учитывая свойства смешанного произведения векторов,

Эквивалентные соотношения (6.21) и (6.22) являются основой для оценивания матрицы







Рассмотрим метод оценивания







Система (6.23) является однородной линейной по





Поскольку на практике в матрицу


где

Согласно МНК в качестве оценок матрицы вращения и вектора трансляции следует выбрать такие

















Значительно более сложной задачей является задача оценивания матрицы






Углы






Затем в окрестности этих значений для уточнения положения минимума можно воспользоваться одним из известных методов минимизации [6.5, гл.V] (например, наискорейшего спуска, Ньютона, Маркуардта).
Наконец, получив оценки






В заключение необходимо сказать, что развитием темы взаимного ориентирования является задача самокалибровки системы камер, целью которой является оценивание как внутренних так и внешних параметров. Не останавливаясь на этой задаче подробно, отметим только, что в системе, состоящей из двух, даже одинаковых, камер, данных для самокалибровки недостаточно. Добавление третьей камеры с теми же внутренними параметрами делает самокалибровку возможной. Подробное исследование этого вопроса можно найти в [6.7].
Отметим, что задача определения взаимного положения камер может иметь и другую трактовку. Предположим, что движущаяся камера непрерывно регистрирует некоторую сцену. Тогда, анализируя последовательность изображений и решая эту задачу, можно определить характер движения камеры в пространстве.
6.6. Поиск сопряженных точек
Центральной проблемой компьютерного стереозрения является поиск сопряженных точек. Задача автоматизированного поиска сопряженных точек состоит в следующем: на одном из изображений выбрана точка



Оказывается, на первый вопрос можно дать достаточно строгий ответ.
Обратимся к соотношению (6.21). Известно [6.8, Приложение], что векторное произведение




Тогда (6.21) можно представить как

или

где

С другой стороны, любая прямая линия на плоскости может быть задана уравнением





с вектором коэффициентов

а в плоскости изображения второй камеры - прямую

с вектором коэффициентов

Это значит, что если в плоскости изображения первой камеры указана точка с вектором внутренних координат

Этот результат имеет наглядную геометрическую иллюстрацию (рис.6.6).

Рис. 6.6. Эпиполярные линии
Оптические центры камер


















Практическая ценность полученного результата заключается в том, что его использование при поиске сопряженных точек позволяет существенно сократить размер зоны поиска, выполняя поиск не на всем изображении, а только вдоль эпиполярной линии, и тем самым снизить вероятность ложной идентификации фрагментов.
В отличие от рассмотренных ранее вопросов, сопоставление окрестностей сопряженных точек не поддается строгой формализации, поскольку в его основе лежит проблема идентификации по изображениям фрагментов реального трехмерного мира, которые с трудом поддаются адекватному формальному описанию. Возникающие при съемке и зависящие от ракурса проективные и яркостные искажения приводят к тому, что в изображениях одних и тех же участков сцены, снятых под разными ракурсами, могут появиться значительные отличия. Принципиально важно то, что эти отличия зависят не только от геометрии съемки, но и от геометрических и физических характеристик самой сцены. Расположение источника света по отношению к поверхности сцены влияет на распределение освещенности. Положение элементов сцены, их отражательные и рассеивающие свойства определяют количество энергии, попадающей в объективы камер, а следовательно, и локальные отличия в яркости сопряженных фрагментов изображений.
На рис.6.7 схематично показаны некоторые причины возникновения различий в изображениях. Пунктиром показаны индикатрисы излучения (рассеяния) в точках


Видно, что интенсивность излучения из точки












Величина различий зависит от разницы в ракурсах съемки. Как правило, чем больше эта разница (в частности, чем больше база), тем менее похожими становятся изображения.
Поэтому все методы отождествления окрестностей сопряженных точек в большей или меньшей степени опираются не на формальный подход, а на здравый смысл.

Рис.6.7. Проективные и яркостные искажения
Одним из наиболее распространенных методов идентификации является корреляционный. Детальное описание корреляционного метода приведено в гл.6. При незначительных отличиях в ракурсах съемки и на достаточно гладких поверхностях от него можно ожидать хороших результатов. На рис.6.8 (а и б) приведена пара вертолетных снимков района озера Карымское (Камчатка), на которые нанесена прореженная сетка сопряженных точек, найденных корреляционным методом, а на рис.6.8.в показана поверхность, «натянутая» на трехмерные точки, координаты которых вычислены методом, изложенным в п.6.2. Следует заметить, что построение поверхности, лежащей на заданном множестве трехмерных точек, представляет собой самостоятельную нетривиальную задачу, рассмотрение которой выходит за рамки темы, обсуждаемой в этой главе.
На снимках есть области, где сопряженные точки не удалось найти. Причин этому несколько. Часть сцены, видимая в правой части правого снимка, просто не попала в поле зрения левой камеры. Кроме этого, на снимках есть участки с мало изменяющейся яркостью. На таких участках корреляционный критерий не дает хорошо выраженного максимума, поэтому здесь координаты сопряженных точек определяются с большими погрешностями. Более того, здесь велика вероятность ложных отождествлений. Пространственное представление о таких участках получить без привлечения дополнительной информации невозможно. Если размеры этих участков малы, а по косвенным признакам можно предположить, что поверхность сцены изменяется плавно, можно интерполировать трехмерную структуру участков с их границ внутрь, как это сделано для участков


Если их размеры велики, или сопряженные точки на границах не определены, восстановить трехмерную структуру участка не удается (участки


Для того, чтобы восстановить мелкую структуру сцены, необходимо, чтобы сопряженные точки лежали достаточно часто.
В приведенном примере для построения рельефа найдено более 7000 точек.
![]() |
![]() |
|
а) |
б) |
![]() |
|
|
в) |
|
|
Рис.6.8. Восстановление поверхности трехмерной сцены по стереопаре (приведено с любезного согласия авторов [6.9]) |
Влияние яркостных искажений можно попытаться устранить, отказавшись от сопоставления фрагментов исходных изображений, и перейдя к сопоставлению фрагментов контурных изображений, где выделены края, т.е. переходы между областями с постоянной яркостью. На таких переходах, как известно, градиент яркости имеет максимум, а лапласиан обращается в нуль. Это обстоятельство и используется для выделения краев [6.10, п.17.4]. Существенным моментом является то, что контуры на изображениях непрерывных поверхностей должны располагаться в одинаковом порядке, как это видно на рис. 6.9 (изображения точек




Кроме того, сама задача выделения краев только на первый взгляд кажется такой простой. В действительности неизбежное присутствие шумов в изображениях может привести к частичному исчезновению контуров или появлению ложных. Идея поиска сопряженных точек с помощью отождествления краев была особенно популярна у биологов и психологов, исследовавших механизмы зрения [6.11], но, как нам кажется, в таком идеальном виде практического применения не нашла.
Еще один подход к поиску сопряженных точек опирается на предварительный раздельный анализ изображений, позволяющий выделить на них некоторые характерные объекты или особенности. Так на аэроснимках городских территорий можно попытаться выделить перекрестки, отдельные дома или их фрагменты, деревья и т.п., а затем выполнить их отождествление между снимками.
По-видимому, наиболее удачных результатов можно ожидать от комбинированного использования всех этих методов и применения итеративной схемы, когда по найденным сопряженным точкам строится оценка поверхности, с учетом которой изображения подвергаются масштабной коррекции и выполняется поиск новых сопряженных точек.

Рис.6.9. Упорядочение сопряженных точек в случае непрерывных поверхностей
ВОПРОСЫ К ГЛАВЕ 6
6.1. Какой смысл имеет знак при

6.2. Какой вид примет выражение (6.3), если вектор трансляции будет задан в глобальной системе координат?
6.3. Обратимся к рис. 6.3. Какой вид будут иметь матрицы




6.4. Пусть в ситуации, изображенной на рис. 6.3, векторы




6.5. Почему в предыдущем вопросе векторы



6.6. Докажите справедливость соотношений (6.17).
Дискретизация и квантование непрерывных изображений
Очень редко изображения, получаемые в информационных системах, имеют цифровую форму. Поэтому их преобразование к этому виду является обязательной операцией, если предполагается использовать цифровую обработку, передачу, хранение. Как и при одномерных сигналах, данное преобразование включает в себя две процедуры. Первая состоит в замене непрерывного кадра дискретным и обычно называется дискретизацией, а вторая выполняет замену непрерывного множества значений яркости множеством квантованных значений и носит название квантования. При цифровом представлении каждому из квантованных значений яркости ставится в соответствие двоичное число, чем и достигается возможность ввода изображения в ЭВМ.Двумерный характер изображения по сравнению с обычными сигналами содержит дополнительные возможности оптимизации цифрового представления с целью сокращения объема получаемых цифровых данных. В связи с этим изучался вопрос о наилучшем размещении уровней квантования, а также об использовании различных растров [1.1...1.3], другие аспекты данной задачи. Следует, однако, сказать, что в подавляющем большинстве случаев на практике применяют дискретизацию, основанную на использовании прямоугольного растра, и равномерное квантование яркости. Это связано с простотой выполнения соответствующих операций и относительно небольшими преимуществами от использования оптимальных преобразований. При использовании прямоугольного растра в окончательном виде цифровое изображение обычно представляет собой матрицу, строки и столбцы которой соответствуют строкам и столбцам изображения.
1.1. Дискретизация непрерывных изображений
Замену непрерывного изображения дискретным можно выполнить различными способами. Можно, например, выбрать какую-либо систему ортогональных функций и, вычислив коэффициенты представления изображения по этой системе (по этому базису), заменить ими изображение. Многообразие базисов дает возможность образования различных дискретных представлений непрерывного изображения. Однако наиболее употребительной является периодическая дискретизация, в частности, как упоминалось выше, дискретизация с прямоугольным растром. Такой способ дискретизации может рассматриваться как один из вариантов применения ортогонального базиса, использующего в качестве своих элементов сдвинутые

Пусть



где


![]() |
|
Рис. 1.1. Расположение отсчетов при прямоугольной дискретизации |
Двумерный непрерывный частотный спектр



которому отвечает двумерное обратное непрерывное преобразование Фурье:

Последнее соотношение верно при любых значениях



Обозначим для краткости через




Выполняя замену переменных по правилу






Здесь учтено, что





Теперь выражение (1.5) имеет форму обратного преобразования Фурье, следовательно стоящая под знаком интеграла функция

является двумерным спектром дискретного изображения. В плоскости ненормированных частот выражение (1.6) имеет вид:

Из (1.7) следует, что двумерный спектр дискретного изображения является прямоугольно периодическим с периодами








![]() |
![]() |
|
а) |
б) |
|
Рис. 1.2. Частотные спектры непрерывного и дискретного изображений |
Сам результат суммирования существенно зависит от значений этих частотных сдвигов, или, иными словами, от выбора интервалов дискретизации










Таким образом, в пределах частотной области




в которых

Соотношение (1.8) определяет способ получения непрерывного изображения



Спектр изображения на его выходе содержит ненулевые компоненты лишь в частотной области



Таким образом, идеальное интерполяционное восстановление непрерывного изображения выполняется при помощи двумерного фильтра с прямоугольной частотной характеристикой (1.10). Нетрудно записать в явном виде алгоритм восстановления непрерывного изображения.
Двумерная импульсная характеристика восстанавливающего фильтра, которую легко получить при помощи обратного преобразования Фурье от (1.10), имеет вид:

Продукт фильтрации может быть определен при помощи двумерной свертки входного изображения и данной импульсной характеристики. Представив входное изображение





после выполнения свертки находим:

Полученное соотношение указывает способ точного интерполяционного восстановления непрерывного изображения по известной последовательности его двумерных отсчетов. Согласно этому выражению для точного восстановления в роли интерполирующих функций должны использоваться двумерные функции вида

Подчеркнем еще раз, что эти результаты справедливы, если двумерный спектр сигнала является финитным, а интервалы дискретизации достаточно малы. Справедливость сделанных выводов нарушается, если хотя бы одно из этих условий не выполняется. Реальные изображения редко имеют спектры с ярко выраженными граничными частотами. Одной из причин, приводящих к неограниченности спектра, является ограниченность размеров изображения. Из-за этого при суммировании в (1.7) в каждой из зон

Особенностью оптимального восстановления изображения в промежутках между отсчетами является использование всех отсчетов дискретного изображения, как это предписывается процедурой (1.11). Это не всегда удобно, часто требуется восстанавливать сигнал в локальной области, опираясь на некоторое небольшое количество имеющихся дискретных значений. В этих случаях целесообразно применять квазиоптимальное восстановление при помощи различных интерполирующих функций.
Такого рода задача возникает, например, при решении проблемы привязки двух изображений, когда из-за геометрических расстроек этих изображений имеющиеся отсчеты одного из них могут соответствовать некоторым точкам, находящимся в промежутках между узлами другого. Решение этой задачи более подробно обсуждается в последующих разделах данного пособия.
![]() |
![]() |
|
а) |
б) |
![]() |
![]() |
|
в) |
г) |
|
Рис. 1.3. Влияние интервала дискретизации на восстановление изображения «Отпечаток пальца» |

Рис. 1.3.в,г показывают последствия от неправильного выбора интервалов дискретизации. При их получении осуществлялась “дискретизация непрерывного” изображения рис. 1.3.а путем прореживания его отсчетов. Рис. 1.3.в соответствует увеличению шага дискретизации по каждой координате в три, а рис. 1.3.г - в четыре раза. Это было бы допустимо, если бы значения граничных частот были ниже в такое же число раз. В действительности, как видно из рис. 1.3.б, происходит нарушение требований (1.9), особенно грубое при четырехкратном прореживании отсчетов. Поэтому восстановленные при помощи алгоритма (1.11) изображения оказываются не только расфокусированными, но и сильно искажают текстуру отпечатка.
![]() |
![]() |
|
а) |
б) |
![]() |
![]() |
|
в) |
г) |
|
Рис. 1.4. Влияние интервала дискретизации на восстановление изображения «Портрет» |
На рис. 1. 4 приведена аналогичная серия результатов, полученных для изображения типа “портрет”. Последствия более сильного прореживания ( в четыре раза на рис. 1.4.в и в шесть раз на рис. 1.4.г) проявляются в основном в потере четкости. Субъективно потери качества представляются менее значительными, чем на рис. 1.3. Это находит свое объяснение в значительно меньшей ширине спектра, чем у изображения отпечатка пальца. Дискретизация исходного изображения соответствует граничной частоте


1.2. Квантование изображений
При цифровой обработке изображений непрерывный динамический диапазон значений яркости делится на ряд дискретных уровней. Эта процедура называется квантованием. Квантователь преобразует непрерывную переменную










Рис.1.5.Функция, описывающая квантование
Задача построения квантователя состоит в определении значений порогов




Таким образом, задачу построения квантователя можно сформулировать как задачу нахождения оптимальных значений


Обычно при фиксированном числе уровней квантователь оптимизируется по критерию минимальной среднеквадратической ошибки

в предположении, что яркость


Cреднеквадратическая ошибка квантования (1.12) равна

Дифференцируя (1.13) по переменным




(1.14)

Следует отметить, что крайние пороги




Из (1.15) следует, что пороги




При равномерном распределении яркости нелинейные уравнения (1.15) можно представить в виде [1.3]





В системах цифровой обработки изображений стремятся уменьшить число уровней и порогов квантования, т.к. от их количества зависит длина двоичного кодового слова, которым представляются проквантованные отсчеты в ЭВМ. Однако при относительно небольшом числе уровней

Ложные контуры значительно ухудшают визуальное качество изображения, т.к. зрение человека особенно чувствительно именно к контурам. При равномерном квантовании типичных изображений требуется не менее 64 уровней.
На рис.1.7.а и 1.7. б приведены результаты равномерного квантования изображения «Портрет» соответственно на 256 и 14 уровней квантования.

Рис.1.6. К механизму возникновения ложных контуров
![]() |
![]() |
|
а) |
б) |
|
Рис.1.7. Результаты равномерного квантования |
![]() |
![]() |
|
Рис.1.8. Результат неравномерного квантования |
Рис.1.9. Гистограмма изображения “Портрет” |


Чтобы избежать неравномерного квантования, которое не может быть выполнено с помощью стандартного АЦП, используют нелинейные преобразования (рис.1.10). Отсчет







Рис.1.10. Квантование с предварительным нелинейным преобразованием
Для разрушения ложных контуров Робертс предложил перед равномерным квантованием к отсчетам яркости добавлять шум с равномерной плотностью распределения вероятностей. Добавленный шум переводит одни отсчеты изображения на уровень выше, а другие на уровень ниже. Тем самым разрушаются ложные контуры. Дисперсия добавляемого шума должна быть небольшой, чтобы не привести к искажениям, воспринимаемым как «снег» на изображении, и в то же время достаточной для разрушения ложных контуров. Обычно используют равномерно распределенный шум на интервале

При 8-ми уровнях квантования добавляемый шум становится слишком заметным, однако ложные контуры разрушены практически полностью.
![]() |
![]() |
|
а) |
б) |
|
Рис.1.11. Результаты равномерного квантования с предварительным добавлением шума |


Эта операция повторяется для всех блоков. Получаемое при этом изображение квантуется на два уровня. На рис. 1.12.а приведено полутоновое изображение «Портрет» с добавленным возмущающим сигналом. На рис. 1.12.б,в приведены результаты бинарного квантования изображения «Портрет» с добавленным возмущающим сигналом (рис.1.13.б) и без него (рис.1.13.в).

а)
![]() |
![]() |
|
б) |
в) |
|
Рис.1.12.Растрирование изображений |
Улучшение визуального качества изображений путем поэлементного преобразования
В большом числе информационных систем применяется представление результатов обработки данных в виде изображения, выводимого на экран для использования наблюдателем. Процедуру, обеспечивающую такое представление, называют визуализацией. Желательно при помощи обработки придать выводимому изображению такие качества, благодаря которым его восприятие человеком было бы по возможности комфортным. Часто бывает полезным подчеркнуть, усилить какие-то черты, особенности, нюансы наблюдаемой картины с целью улучшения ее субъективного восприятия.Последнее - субъективность восприятия - сильно усложняет применение формализованного подхода в достижении данных целей.
Поэтому при обработке изображений для визуализации получили распространение методы, в которых часто отсутствуют строгие математические критерии оптимальности. Их заменяют качественные представления о целесообразности той или иной обработки, опирающиеся на субъективные оценки результатов.
Подавляющее большинство процедур обработки для получения результата в каждой точке кадра привлекает входные данные из некоторого множества точек исходного изображения, окружающих обрабатываемую точку. Однако имеется группа процедур, где осуществляется так называемая поэлементная обработка. Здесь результат обработки в любой точке кадра зависит только от значения входного изображения в этой же точке. Очевидным достоинством таких процедур является их предельная простота. Вместе с тем, многие из них приводят к очевидному субъективному улучшению визуального качества. Этим определяется внимание, которое уделяется поэлементным процедурам. Не преувеличивая их роли, отметим, что очень часто поэлементная обработка применяется как заключительный этап при решении более сложной задачи обработки изображения.
Сущность поэлементной обработки изображений сводится к следующему. Пусть





позволяющая по значению исходного сигнала определить значение выходного продукта. В общем случае, как это учтено в данном выражении, вид или параметры функции




одинаковой для всех точек кадра.
Цель данной главы состоит в изучении наиболее распространенных процедур поэлементной обработки.
2.1. Линейное контрастирование изображения
Задача контрастирования связана с улучшением согласования динамического диапазона изображения и экрана, на котором выполняется визуализация. Если для цифрового представления каждого отсчета изображения отводится 1 байт (8 бит) запоминающего устройства, то входной или выходной сигналы могут принимать одно из 256 значений. Обычно в качестве рабочего используется диапазон 0...255; при этом значение 0 соответствует при визуализации уровню черного, а значение 255 - уровню белого. Предположим, что минимальная и максимальная яркости исходного изображения равны




При линейном контрастировании используется линейное поэлементное преобразование вида:

параметры которого





относительно параметров преобразования



Результат линейного контрастирования исходного изображения, представленного на рис. 2.1.а, приведен на рис.2.1.б при

![]() |
![]() |
|
а) |
б) |
|
Рис 2.1 Пример линейного контрастирования |

2.2. Соляризация изображения
При данном виде обработки преобразование (2.2) имеет вид [2.1]:

где





![]() |
|
Рис. 2.2. Функция, описывающая соляризацию |
Как следует из рис.2.2, смысл соляризации заключается в том, что участки исходного изображения, имеющие уровень белого или близкий к нему уровень яркости, после обработки имеют уровень черного. При этом сохраняют уровень черного и участки, имеющие его на исходном изображении. Уровень же белого на выходе приобретают участки, имеющие на входе средний уровень яркости (уровень серого). Пример применения соляризации приведен на рис.2.3.
![]() |
![]() |
|
а) |
б) |
|
Рис. 2.3. Пример соляризации |
На рис.2.3.а показано исходное изображение, а на рис.2.3.б - результат его соляризации. На втором этапе обработки здесь применено линейное контрастирование при


2.3. Препарирование изображения
Препарирование представляет собой целый класс поэлементных преобразований изображений. Характеристики применяемых на практике процедур препарирования приведены на рис.2.4. Остановимся на описании некоторых из них.
Преобразование с пороговой характеристикой (рис.2.4.а) превращает полутоновое изображение, содержащее все уровни яркости, в бинарное, точки
которого имеют яркости


![]() |
![]() |
![]() |
|
а) |
б) |
в) |
![]() |
![]() |
![]() |
|
г) |
д) |
е) |
![]() |
![]() |
![]() |
|
ж) |
з) |
и) |
![]() |
||
|
к) |
||
|
|
||
|
Рис.2.4.Примеры преобразований, используемых при препарировании |
а детали, содержащиеся внутри объектов или внутри фона, не представляют интереса. Основной проблемой при проведении такой обработки является определение порога

![]() |
|
Рис.2.5. К выбору порога бинарного квантования |
называемой бинарной сегментации. Здесь же ограничимся обсуждением частного, но практически важного случая. Иногда при обработке приходится иметь дело с изображениями, хранимыми как полутоновые, но по своему содержанию мало отличающимися от бинарных. К ним относятся текст, штриховые рисунки, чертежи, изображение отпечатка пальца, пример которого приведен на рис.2.6.а. Плотность вероятности

Пример бинаризации изображения отпечатка пальца приведен на рис.2.6.б.
Смысл других преобразований, представленных на рис.2.4, нетрудно понять, рассматривая их характеристики. Например, преобразование рис.2.4.б выполняет яркостный срез изображения, выделяя те его участки, где яркость соответствует выделенному интервалу. При этом остальные участки оказываются полностью “погашенными” (имеют яркость, соответствующую уровню черного). Перемещая выделенный интервал по яркостной шкале и изменяя его ширину, можно детально исследовать содержание картины.
![]() |
![]() |
|
Рис.2.6. Пример бинаризации изображения |
Преобразование, приведенное на рис.2.4.ж, также позволяет повысить детальность наблюдаемой картины в выбранном диапазоне яркостей, однако в отличие от предыдущего здесь выходное изображение использует полный динамический диапазон. По существу, это преобразование представляет собой линейное контрастирование, применяемое к избранному диапазону входного изображения. Как и в предыдущем варианте, участки, не попавшие в этот диапазон, образуют после препарирования черный фон.
Иногда наглядность изображения повышается применением преобразования типа пилообразного контрастирования (рис.2.4.к). При этом различные яркостные диапазоны одновременно подвергаются локальному яркостному контрастированию. Однако необходимо иметь в виду, что данное преобразование, как и некоторые другие, может сопровождаться появлением ложных контуров на получаемом препарате.
Аналогично можно качественно рассмотреть и остальные процедуры препарирования, представленные на рис.2.4.
На рис.2.7 приведены результаты эксперимента, в котором к аэроснимку участка земли (рис.2.7.а) применялись преобразования типа пороговая обработка (рис.2.7.б) и пилообразное контрастирование (рис.2.7.в). Первое приводит к выявлению границ отдельных участков, создавая общее интегральное представление о наблюдаемой сцене. Второе, наоборот, дает возможность наблюдения мелких деталей на всех участках изображения.
Сочетание двух таких возможностей может оказаться полезным наблюдателю.
![]() |
![]() |
|
а) |
б) |
![]() |
|
|
в) |
|
|
Рис.2.7. Примеры препарирования изображения |
В заключение отметим, что препарирование часто используется и в автоматических системах обработки визуальной информации, поскольку подготавливаемый при этом препарат может содержать всю информацию, необходимую для последующей (вторичной) обработки. Например, если при наблюдении из космоса требуется автоматически обнаружить на изображении некоторый объект, имеющий известную конфигурацию, то для этого может быть достаточно бинарного препарата, передающего эту конфигурацию.
2.4. Преобразование гистограмм, эквализация
При всех поэлементных преобразованиях происходит изменение закона распределения вероятностей, описывающего изображение. Рассмотрим механизм этого изменения на примере произвольного преобразования с монотонной характеристикой, описываемой функцией

![]() |
|
Рис.2.8. Нелинейное преобразование случайной величины |

случайная величина











где модули учитывают зависимость вероятностей от абсолютных длин интервалов (и независимость от знаков
приращений






Это выражение позволяет вычислить плотность вероятности продукта преобразования, которая, как видно из него, не совпадает
с плотностью распределения исходной случайной величины. Ясно, что существенное влияние на плотность

Соотношения становятся несколько сложнее, если преобразование описывается не взаимно-однозначной функцией [2.2]. Примером такой более сложной характеристики с неоднозначной обратной функцией может служить пилообразная характеристика рис.2.4.к. Однако, в общем, смысл вероятностных преобразований при этом не изменяется.
Все рассмотренные в данной главе поэлементные преобразования изображений можно рассмотреть с точки зрения изменения плотности вероятности, описываемого выражением (2.4). Очевидно, что ни при одном из них плотность вероятности выходного продукта не будет совпадать с плотностью вероятности исходного изображения (за исключением, конечно, тривиального преобразования

Определение вероятностных характеристик изображений, прошедших нелинейную обработку, является прямой задачей анализа. При решении практических задач обработки изображений может быть поставлена обратная задача: по известному виду плотности вероятности

виду



где








Подставляя это выражение в условие вероятностной эквивалентности


после простых преобразований получаем соотношение

представляющее собой характеристику (2.2) в решаемой задаче. Согласно (2.6) исходное изображение проходит нелинейное преобразование, характеристика которого

Аналогичным образом могут быть получены решения других подобных задач, в которых требуется привести законы распределения изображения к заданному виду. В [2.4] приведена таблица таких преобразований. Одно из них, так называемая гиперболизация распределения, предполагает приведение плотности вероятности преобразованного изображения к гиперболическому виду:

Если учесть, что при прохождении света через глаз входная яркость логарифмируется его сетчаткой, то итоговая плотность вероятности оказывается равномерной. Таким образом, отличие от предыдущего примера заключается в учете физиологических свойств зрения. Можно показать, что изображение с плотностью вероятности (2.7) получается на выходе нелинейного элемента с характеристикой:

также определяемой интегральным законом распределения исходного изображения.
Таким образом, преобразование плотности вероятности предполагает знание интегрального распределения для исходного изображения. Как правило, достоверные сведения о нем отсутствуют. Использование для рассматриваемых целей аналитических аппроксимаций также малопригодно, т.к. их небольшие отклонения от истинных распределений могут приводить к существенному отличию результатов от требуемых. Поэтому в практике обработки изображений преобразование распределений выполняют в два этапа.
На первом этапе измеряется гистограмма
исходного изображения. Для цифрового изображения, шкала яркостей которого, например, принадлежит целочисленному диапазону 0...255, гистограмма представляет собой таблицу из 256 чисел.
Каждое из них показывает количество точек в кадре, имеющих данную яркость. Разделив все числа этой таблицы на общий размер выборки, равный числу используемых точек изображения, получают оценку распределения вероятностей яркости изображения. Обозначим эту оценку



На втором этапе выполняется само нелинейное преобразование (2.2), обеспечивающее необходимые свойства выходного изображения. При этом вместо неизвестного истинного интегрального распределения используется его оценка, основанная на гистограмме. С учетом этого все методы поэлементного преобразования изображений, целью которых является видоизменение законов распределения, получили название гистограммных методов. В частности, преобразование, при котором выходное изображение имеет равномерное распределение, называется эквализацией (выравниванием) гистограмм.
Отметим, что процедуры преобразования гистограмм могут применяться как к изображению в целом, так и к отдельным его фрагментам. Последнее может быть полезным при обработке нестационарных
изображений, содержание которых существенно различается по своим характеристикам на различных участках. В этом случае лучшего эффекта можно добиться, применяя гистограммную обработку к отдельным участкам.
Использование соотношений (2.4)-(2.8) , справедливых для изображений с непрерывным распределением яркости, является не вполне корректным для цифровых изображений. Необходимо иметь в виду, что в результате обработки не удается получить идеальное распределение вероятностей выходного изображения, поэтому полезно проводить контроль его гистограммы.
![]() |
![]() |
|
а) исходное изображение |
б) результат обработки |
|
Рис. 2.9. Пример эквализации изображения |
На рис.2.9 приведен пример эквализации, выполненной в соответствии с изложенной методикой. Характерной чертой многих изображений, получаемых в реальных изображающих системах, является значительный удельный вес темных участков и сравнительно малое число участков с высокой яркостью.
Эквализация призвана откорректировать картину, выровняв интегральные площади участков с различными яркостями. Сравнение исходного (рис.2.9.а) и обработанного (рис.2.9.б) изображений показывает, что происходящее при обработке перераспределение яркостей приводит к улучшению визуального восприятия.
2.5. Применение табличного метода
при поэлементных преобразованиях изображений
При поэлементных преобразованиях изображений вычисления по формуле (2.2) должны быть выполнены для всех точек исходного изображения. Даже при не очень трудоемких вычислениях в соответствии с видом применяемого преобразования общий объем вычислительной работы, выполняемой ЭВМ, может оказаться значительным. В тех же задачах, где функция

Сущность табличного метода состоит в том, что путем предварительного расчета создается таблица функции

табл.2.1.
![]() |
![]() |
![]() |
. |
. |
. |
. |
. |
![]() |
![]() |
|
![]() ![]() |
![]() |
![]() |
. |
. |
. |
. |
. |
![]() |
![]() |
|
|
Табл.2.1. Табличное задание функции ![]() |
При обработке изображения вместо вычислений используются готовые результаты путем обращения к этой таблице. При этом значение входной яркости



Необходимо иметь в виду, что все реальные таблицы, которые могут быть записаны в оперативной памяти ЭВМ, имеют ограниченную длину. Если множество значений входного сигнала превышает размеры таблицы, то при попадании значения


Вместе с тем, если исходное изображение представлено в целочисленной записи в диапазоне 0..255, то размеры полной таблицы, содержащей все эти значения, вполне приемлемы для ее хранения. Кроме того, в этом случае значение яркости исходного сигнала служит адресом, определяющим номер столбца в таблице. Обработка с использованием этого метода оказывается очень удобной и быстродействующей.
ВОПРОСЫ К ГЛАВЕ 2
2.1. В чем состоит сущность поэлементной обработки изображений ?
2.2. Как определяются параметры преобразования изображения при его линейном контрастировании ?
2.3. Поясните механизм действия поэлементных преобразований, применяемых при препарировании изображения (рис.2.4).
2.4. Каков механизм появления ложных контуров при применении пилообразного контрастирования? При каких еще процедурах могут возникать ложные контуры?
2.5. Докажите, что применение линейного контрастирования не изменяет вида плотности вероятности изображения. Как при этом изменяются параметры плотности вероятности?
2.6. Докажите справедливость преобразования (2.7) для получения гиперболического распределения (2.6).
2.7. Докажите, что применение гиперболизации распределения яркости приводит к равновероятному распределению сигнала на выходе сетчатки глаза, если учесть ее логарифмирующее воздействие на входной свет.
2.8. Поясните, почему при эквализации изображения не удается привести гистограмму к идеальному равномерному виду ?
Фильтрация изображений
Обычно изображения, сформированные различными информационными системами, искажаются действием помех. Это затрудняет как их визуальный анализ человеком-оператором, так и автоматическую обработку в ЭВМ. При решении некоторых задач обработки изображений в роли помех могут выступать и те или иные компоненты самого изображения. Например, при анализе космического снимка земной поверхности может стоять задача определения границ между ее отдельными участками - лесом и полем, водой и сушей и т.п. С точки зрения этой задачи отдельные детали изображения внутри разделяемых областей являются помехой.Ослабление действия помех достигается фильтрацией . При фильтрации яркость (сигнал) каждой точки исходного изображения, искаженного помехой, заменяется некоторым другим значением яркости, которое признается в наименьшей степени искаженным помехой. Что может послужить основой для таких решений ? Изображение часто представляет собой двумерную функцию пространственных координат, которая изменяется по этим координатам медленнее (иногда значительно медленнее), чем помеха, также являющаяся двумерной функцией. Это позволяет при оценке полезного сигнала в каждой точке кадра принять во внимание некоторое множество соседних точек, воспользовавшись определенной похожестью сигнала в этих точках. В других случаях, наоборот, признаком полезного сигнала являются резкие перепады яркости. Однако, как правило, частота этих перепадов относительно невелика, так что на значительных промежутках между ними сигнал либо постоянен, либо изменяется медленно. И в этом случае свойства сигнала проявляются при наблюдении его не только в локальной точке, но и при анализе ее окрестности. Заметим, что понятие окрестности является достаточно условным. Она может быть образована лишь ближайшими по кадру соседями, но могут быть окрестности, содержащие достаточно много и достаточно сильно удаленных точек кадра.
В этом последнем случае, конечно, степень влияния далеких и близких точек на решения, принимаемые фильтром в данной точке кадра, будет совершенно различной.
Таким образом, идеология фильтрации основывается на рациональном использовании данных как из рабочей точки, так и из ее окрестности. В этом проявляется существенное отличие фильтрации от рассмотренных выше поэлементных процедур: фильтрация не может быть поэлементной процедурой обработки изображений.
Задача заключается в том, чтобы найти такую рациональную вычислительную процедуру, которая позволяла бы достигать наилучших результатов. Общепринято при решении этой задачи опираться на использование вероятностных моделей изображения и помехи, а также на применение статистических критериев оптимальности. Причины этого понятны - это случайный характер как информационного сигнала, так и помехи и это стремление получить минимальное в среднем отличие результата обработки от идеального сигнала. Многообразие методов и алгоритмов связано с большим разнообразием сюжетов, которые приходится описывать различными математическими моделями. Кроме того, применяются различные критерии оптимальности, что также ведет к разнообразию методов фильтрации. Наконец, даже при совпадении моделей и критериев очень часто из-за математических трудностей не удается найти оптимальную процедуру. Сложность нахождения точных решений порождает различные варианты приближенных методов и процедур.
3.1. Оптимальная линейная фильтрация.
Уравнение Винера-Хопфа
Пусть




Здесь





В дальнейшем будем придерживаться принятой при цифровой обработке изображений декартовой системы координат с началом в левом верхнем углу кадра и с положительными направлениями из этой точки вниз и вправо.
На рис. 3. 1 показаны примеры окрестностей различных типов, изображенные в виде совокупностей точек. Центром окрестностей, рабочей точкой, в которой осуществляется обработка, является точка с координатами

![]() |
![]() |
![]() |
|
а) |
б) |
в) |
|
Рис. 3.1 Примеры окрестностей различных видов |

Некоторые точки окрестности, приведенной на рис. 3.1.б, удовлетворяют принципу каузальности. Вместе с тем, здесь имеются и такие точки, обе координаты которых превышают соответствующие координаты рабочей точки. Фильтрация, опирающаяся на использование окрестностей с сочетанием таких свойств, называется некаузальной.
Окрестности, показанной на рис. 3.1.в, соответствует полукаузальная фильтрация. Одна из координат всех точек окрестности - в данном примере номер строки - не превышает соответствующей координаты рабочей точки. Вторая же координата - в примере номер столбца - у некоторых точек также не превышает соответствующей координаты рабочей точки. Однако среди точек окрестности имеются и такие, у которых эта вторая координата превышает соответствующую координату рабочей точки.
Смысл, заложенный в данную классификацию, состоит в том, что, согласно принципу причинности, на формирование отклика физически осуществимого фильтра не могут оказывать влияния элементы входного сигнала, не поступившие к моменту формирования выходного отсчета. Этот принцип естественным образом «работает» в динамических системах, где все происходящие в них процессы являются временными процессами.
При цифровой обработке изображений часто приходится иметь дело с ранее сформированными изображениями, уже хранящимися в памяти устройства обработки. В этом смысле соотношение координат, строго говоря, уже не играет такой принципиальной причинной роли, как при обработке сигналов в реальном масштабе времени. Вместе с тем, традиционно сложилась описанная выше классификация процедур обработки изображений, которой, в определенной мере, будем придерживаться и мы в последующем изложении.
При линейной фильтрации выходной эффект определяется линейной комбинацией входных данных:

В этом выражении







Наиболее распространенным критерием оптимальности, применяемым для оценки качества обработки, является критерий минимума среднего квадрата ошибок. Применительно к фильтрации запишем его выражение в виде:

где




Оптимизационную задачу (3.3) нетрудно свести к решению уравнения или системы уравнений.
Для этого вычислим производную от левой части этого выражения по коэффициенту


Входящие в него математические ожидания являются, как нетрудно видеть, отсчетами корреляционных функций, для которых введем следующие обозначения:


С их учетом (3.4) примет более компактный вид:

Считая автокорреляционную












Если разрешить ее относительно всех


Определим средний квадрат ошибок оптимальной фильтрации. Для этого необходимо выполнить возведение в квадрат в выражении (3.3) и учесть в полученном выражении уравнение Винера-Хопфа (3.6). В результате нетрудно получить:

где

Остановимся на анализе изменения средней яркости изображения при его фильтрации.
Вычислив математическое ожидание от обеих частей (3.2), находим:

где принято, что средняя яркость





которое является дополнительным требованием к импульсной характеристике фильтра. Поэтому оптимизационную задачу (3.3) необходимо решать с учетом данного ограничения типа равенства.
Вместо этого часто перед фильтрацией осуществляют вычитание средней яркости

3.2. Масочная фильтрация изображений
при наличии аддитивного белого шума
Распространенным видом помехи является белый шум, аддитивно воздействующий на изображение. Наблюдаемое в этом случае изображение (3.1) имеет вид:

а корреляционная функция шума


Здесь





где





где

Преобразуем также выражение (3.7) для ошибок фильтрации, для чего запишем в явном виде то из уравнений в (3.11), которое соответствует значениям




где

Для того чтобы при решении уравнения (3.11) воспользоваться существующими программными средствами ЭВМ, необходимо выполнить его упорядоченное преобразование к каноническому векторно-матричному виду. Для этого требуется совокупность







В практике цифровой обработки изображений широко используется масочная фильтрация. Ее линейная разновидность является одним из вариантов двумерной КИХ-фильтрации. В качестве маски используется множество весовых коэффициентов, заданных во всех точках окрестности


Визуально эффективность фильтрации можно оценить с помощью рис.3.2. На рис. 3.2.а показан зашумленный портрет (изображение без шума приведено на рис. 1.3.а) при отношении сигнал/шум равном -5дБ.
Результат масочной фильтрации при оптимальном виде ИХ, найденной из (3.11), приведен на рис.3.2.б. Результат фильтрации, выполненной равномерным масочным оператором не приводится, поскольку с визуальной точки зрения он мало отличается от рис.3.2.б. При этом, однако, с количественной точки зрения различия достаточно заметны: если при оптимальной КИХ относительная ошибка




![]() |
![]() |
|
а) |
б) |
Рис. 3.2. П.ример масочной фильтрации при ![]() |
Функционирование таких систем, где отсутствует человеческий глаз, полностью подчинено математическим критериям и качество их работы оценивается только математическими показателями. Понятно, что и качество изображений, используемых в этих системах, также должно оцениваться только математическими критериями.
В заключение данного параграфа подчеркнем, что в целом применение описанных процедур фильтрации приводит к существенному снижению уровня шума на изображении. Количественно эффективность данной обработки можно охарактеризовать коэффициентом улучшения отношения сигнал/шум


Улучшение зависит от уровня шума на исходном изображении и составляет в приведенном эксперименте




3.3. Рекуррентная каузальная фильтрация изображений
Проблема борьбы с шумом не решается полностью применением масочных фильтров по следующим причинам. Во-первых, ограниченность размера окрестности, используемой масочным фильтром, приводит к его потенциально ограниченной способности к подавлению шума. Это проявляется при значительном уровне шума на изображении - в меньшей степени при оптимальном выборе КИХ, сильнее при неоптимальной КИХ. Можно, конечно, увеличивать размер окрестности, прибегая к использованию КИХ-фильтров с более длинными импульсными характеристиками. Однако при этом усиливается второй недостаток масочного фильтра, состоящий в его и без того достаточно высокой вычислительной трудоемкости.
В настоящее время отсутствуют методы двумерной фильтрации, в которых сочетаются предельно достижимое качество фильтрации и низкие требования к вычислительным ресурсам ЭВМ, реализующей обработку. Существует много подходов к решению данной проблемы, но все они для достижения компромисса между точностью и реализуемостью прибегают к тем или иным приближениям. Рассмотрим один из них [3.1].
Идея заключается в использовании двумерного БИХ-фильтра с таким видом импульсной характеристики, при которой его практическая реализация была бы простой, и с такими параметрами этой импульсной характеристики, при которых эффективность фильтрации приближалась бы к потенциально возможной. Создать фильтр с такими свойствами удается на основе аналогии с одномерным фильтром Калмана.
Наиболее простым примером одномерной фильтрации является калмановская фильтрация однородной стационарной гауссовской последовательности, имеющей корреляционную функцию экспоненциального вида

Здесь



При ее наблюдении на фоне гауссовского белого шума оптимальный каузальный фильтр реализуется рекуррентным алгоритмом, который в стационарном (установившемся) режиме фильтрации имеет вид:

Нетрудно установить, что импульсная характеристика этого фильтра имеет экспоненциальный вид:

где









Отталкиваясь от (3.13) как от одномерного аналога, будем находить двумерную БИХ для каузальной фильтрации изображений от некоррелированного шума в виде двумерной экспоненты:

Здесь, как и в случае одномерного фильтра,

Для определения параметра



Замечая, что выражение в круглых скобках является ошибкой фильтрации, представим эту формулу в виде:


Смысл данного выражения состоит в том, что при оптимальной линейной фильтрации ошибка ортогональна всем элементам наблюдаемых данных, используемых при фильтрации. Но тогда нетрудно убедиться и в ортогональности ошибки и результата фильтрации (получаемой оценки)

для чего достаточно вычислить левую часть этого выражения с учетом (3.2) и (3.15).
Для дальнейшего необходимо воспользоваться в (3.16) принятым представлением импульсной характеристики (3.14), в результате данное соотношение превращается в уравнение относительно искомого параметра


С учетом этого, считая, что кадр имеет бесконечные размеры (это позволяет принять бесконечными соответствующие пределы суммирования в (3.2)), можно получить следующее алгебраическое уравнение

относительно параметра


удовлетворяется при



Подставив в (3.7) выражения ИХ (3.14) и корреляционной функции (3.17), можно получить следующую формулу для среднего квадрата ошибок фильтрации:

Подставив далее выражение ИХ (3.14) в (3.2), можно привести выражение отклика фильтра к виду :

Рекуррентный характер алгоритма (3.19) является важным положительным качеством рассматриваемого фильтра. Как следует из (3.19), его работа требует выполнения на каждом шаге обработки всего трех операций умножения и трех суммирования, причем структура алгоритма универсальна и, в частности, не зависит от отношения сигнал/шум. Для сравнения, масочный фильтр с размером окрестности 3

При фильтрации реальных изображений ограниченного размера возникает граничная проблема получения оценок в точках нулевой строки и нулевого столбца. Естественным решением является использование здесь обычной (одномерной) калмановской фильтрации.
Пример применения описанного двумерного фильтра показан на рис. 3.3, где представлен результат эксперимента с тем же портретом и при том же отношении сигнал/шум -5 дБ, что и при испытании масочного фильтра.
![]() |
![]() |
|
а) |
б) |
|
Рис. 3.3. Пример двумерной рекуррентной фильтрации |

Различие заметно усиливается при более высоком уровне шума. Так, при отношении сигнал/шум -10 дБ имеем соответственно

Необходимо отметить, однако, следующее. Вместе с уменьшением уровня шума при двумерной рекуррентной фильтрации наблюдается более значительная утрата резкости обработанного изображения. Это является проявлением упоминавшихся выше динамических искажений, более сильных при бесконечной импульсной характеристике, чем при конечной.
Во-вторых, рассмотренный двумерный фильтр не является абсолютно оптимальным, поскольку его структура определена волевым решением при выборе ИХ в виде (3.14). Поэтому и получаемое при его помощи ослабление шума не является предельным.
3.4. Применение фильтра Винера для некаузальной
двумерной фильтрации
Потенциально наилучшие результаты обработки изображения, в частности, результаты фильтрации, достигаются при использовании некаузального принципа, поскольку этот принцип основан на применении абсолютно всех исходных данных при обработке каждой точки кадра. Понятно, что при рациональном использования этих данных получаемый эффект максимален. Одним из известных вариантов линейной некаузальной фильтрации изображений является фильтр Винера. Его применение связано с предположением о стационарности изображения. Поскольку наличие краев изображения служит нарушением стационарности, то винеровская фильтрация, не является строго оптимальной. Однако при размерах кадра, значительно превышающих интервал корреляции изображения, влияние границ является малым. Эти соображения служат важным стимулом к применению винеровской фильтрации для борьбы с шумом.
Технически фильтр Винера реализуется при помощи дискретного преобразования Фурье в частотной области. Поэтому, прежде чем рассматривать уравнение Винера-Хопфа, которое остается методологической основой фильтрации помех и в этом случае, нам необходимо познакомиться с двумерным дискретным преобразованием Фурье (ДПФ), некоторыми его свойствами и принципами линейной фильтрации на основе ДПФ.
3.4.1. Двумерное дискретное преобразование Фурье
Обозначим через

двумерное поле (двумерный сигнал), описывающее дискретное изображение размера



Если сигнал



![]() |
![]() |
|
а) |
б) |
|
Рис. 3.4. Реальное (а) и периодически продолженное (б) изображения |


Любой периодический сигнал может быть представлен в виде ряда Фурье, но, в отличие от одномерных сигналов, двумерные описываются двумерным рядом Фурье, имеющим вид:

Базисные функции этого двумерного представления - двумерные комплексные экспоненты (иногда называемые комплексными синусоидами)

имеющие, как и сигнал







Коэффициенты Фурье




Выражение (3.22), восстанавливающее сигнал



Заметим, что для точного представления дискретного сигнала


Это и понятно, поскольку сам представляемый сигнал содержит в одном периоде конечное число точек, т.е. имеет конечное число степеней свободы. Ясно, что число степеней свободы в спектре не может отличаться от числа степеней свободы в самом сигнале.
Остановимся на наиболее существенных свойствах двумерного дискретного спектра Фурье. Вычислим спектральные коэффициенты (3.24) в частотных точках


Поскольку при любых целых значениях



означающее прямоугольную периодичность двумерного ДПФ. Следовательно, картина двумерного ДПФ подобна картине двумерного периодически продолженного сигнала, качественно показанной на рис. 3.4.б (если на ней пространственные координаты







Преобразуем соотношение (3.25) следующим образом. Во-первых, вместо частот



которым устанавливается однозначная связь между спектральными коэффициентами в двух различных точках спектрального прямоугольника

Согласно установленному свойству, спектрально- сопряженной зависимостью связаны между собой спектральные коэффициенты, принадлежащие левому верхнему и правому нижнему углам прямоугольника


В заключение данного пункта укажем, что при практическом применении двумерного ДПФ - как прямого, так и обратного, совсем не требуется оперировать периодическими сигналами и спектрами, как это предполагается, казалось бы, преобразованиями (3.22) и (3.24). От этой необходимости избавляют сами соотношения (3.22) и (3.24). В самом деле, прямое преобразование Фурье (3.24) содержит в правой части значения периодически продолженного сигнала






Из сделанных пояснений, имеющих лишь исключительно вычислительное значение, не следует делать вывода об искусственности и ненужности рассмотренных математических моделей периодических полей. При обработке изображений возникают многочисленные задачи, правильное толкование и решение которых возможно только на основе этих математических интерпретаций. Одной из таких важнейших задач является цифровая двумерная фильтрация в спектральной области, осуществление которой связано с выполнением так называемой циклической свертки.
3.4.2. Циклическая свертка
Достоинством обычного преобразования Фурье является то, что с его помощью очень просто выполняется стационарная фильтрация сигналов. Как известно, для этого требуется получить частотный спектр сигнала и частотный коэффициент передачи фильтра.
Затем, перемножив их, определить частотный спектр выходного сигнала, а выполнив обратное преобразование Фурье - найти сам выходной сигнал. Возможно ли применение такой технологии для выполнения двумерной цифровой фильтрации ? Убедимся, что возможно, но с некоторыми оговорками.
Двумерный стационарный (инвариантный к сдвигу) фильтр характеризуют двумерной импульсной характеристикой


Это уравнение обычной свертки, в нем фигурируют обычные, непериодические сигналы и непериодическая ИХ фильтра. При цифровой обработке в ЭВМ не существует частотных спектров, соответствующих таким сигналам и ИХ. Для описания сигнала в частотной области привлекается, как установлено выше, периодически продолженный сигнал



двумерное ДПФ которой








также является периодическим. Покажем, что именно его спектр


Умножим для этого левую и правую части (3.27) на







Выполняя затем во внутренней сумме замену переменных


Таким образом установлено, что именно циклической свертке (3.27) соответствует удобный при практической реализации частотный метод определения выходного сигнала. Необходимо иметь в виду, что та фильтрация, к осуществлению которой обычно стремятся при решении конкретных задач, описывается обычной сверткой (3.26), а не циклической (3.27). Поэтому остается выяснить, в каком соотношении находятся эти две вычислительные процедуры. Не нарушая общности, для большей простоты и наглядности рассмотрим этот вопрос на примере одномерной фильтрации. Сигнал на выходе одномерного фильтра определяется сверткой


в обычном и циклическом вариантах соответственно. Рис. 3.5 поясняет процесс
![]() |
![]() |
![]() |
|
|
а) |
б) |
в) |
|
|
Рис. 3.5. Сравнение обычной и циклической свертки |





В заключение отметим, что характер различий обычной и циклической сверток при фильтрации двумерных цифровых сигналов остается таким же, как для одномерных сигналов. Аналогичны и меры, исключающие нежелательные эффекты циклической свертки.
3.4.3. Решение уравнения Винера-Хопфа в циклическом приближении
Вернемся к задаче некаузальной фильтрации шума на изображении. Оптимальный линейный фильтр определяется и в этом случае уравнением Винера-Хопфа (3.6), в котором для начала область существования


Дискретный винеровский фильтр удается легко найти в циклическом приближении. Для этого требуется вместо реальных функций







Периодичность функций, входящих в уравнение (3.32), позволяет применить к его обеим частям двумерное ДПФ, подобно тому, как это было сделано выше применительно к уравнению (3.27). В результате получаем:

В этом выражении




Найденное решение дает эффективный способ осуществления оптимальной линейной фильтрации изображения.
Его выполнение требует знания спектральных плотностей мощности и опирается на применение к обрабатываемому изображению дискретного преобразования Фурье.
Не следует, однако, забывать, что переход от уравнения (3.31), определяющего истинно оптимальную характеристику фильтра, к уравнению (3.32), позволяющему найти ее периодически продолженный аналог, был выполнен без достаточного обоснования. Поэтому ничего нельзя пока сказать о том, в какой степени найденное решение близко к истинно оптимальному. Для ответа на этот вопрос рассмотрим снова для простоты одномерные аналоги уравнений (3.31) и (3.32), имеющие вид:


Рис. 3.6 иллюстрирует формирование сумм, входящих в правые части этих равенств при некотором произвольном значении сдвига


![]() |
![]() |
|
а) |
б) |
|
Рис. 3.6. Сравнение обычного и циклического уравнений Винера-Хопфа |

Если же интервал


Напомним также, что в данном пособии обсуждается уравнение Винера-Хопфа для стационарных сигналов и изображений. Поэтому вблизи границ обрабатываемого кадра, где само их существование приводит к нарушению этого условия, обработка отклоняется от оптимальной.
На рис. 3.7 приведен пример работы фильтра Винера. Как и ранее эксперимент выполнен при отношении сигнал/шум




оценка результата. Хотя нельзя не отметить, что это достигается ценой большей, чем при других методах, дефокусировки изображения. В этом проявляется общее диалектическое противоречие между борьбой с помехами и
![]() |
![]() |
|
а) |
б) |
Рис. 3.7. Пример винеровской фильтрации шума при ![]() |
Проведение обработки изображений при помощи фильтра Винера требует использования спектральной плотности мощности изображения. Существуют различные способы получения необходимой информации. Один из них основан на предварительном измерении требуемых характеристик по реальному изображению. Полученные при этом спектральные плотности вводятся в ЭВМ в виде таблиц, позволяя задать коэффициент передачи в численном виде. Другой способ, примененный и в представленном эксперименте, состоит в использовании некоторой математической модели изображения, вид спектрально-корреляционных характеристик которой известен. В этом случае реальное изображение используется для измерения только отдельных параметров, входящих в используемую математическую модель. При проведении эксперимента, описанного выше , в частности, использовалась модель изображения в виде гауссовского двумерного поля с корреляционной функцией (3.17), а измерялись коэффициент одношаговой корреляции


Анализ эффективности метода будет неполным, если не сделать оценки вычислительной эффективности реализующей его процедуры. Для вычисления ДПФ разработаны эффективные вычислительные методы, воплощенные в процедурах быстрого преобразования Фурье (БПФ). Количество комплексных умножений, составляющих основную трудоемкость двумерного БПФ, оценивают числом



3.5. Байесовская фильтрация изображений
При всех рассмотренных ранее методах фильтрации с самого начала закладывалось отыскание фильтра в классе линейных систем. Отсюда следует, что могут существовать нелинейные процедуры, обладающие более высокими качественными характеристиками, чем рассмотренные выше. Для их отыскания необходим более общий подход к фильтрации, чем тот, который опирается на решение уравнение Винера-Хопфа. Общепринятая достаточно универсальная идеология фильтрации использует байесовский принцип. Ее применение позволяет, по крайней мере теоретически, создавать как линейные, так и нелинейные алгоритмы фильтрации. Кроме того, этот принцип помогает выяснить, при каких условиях линейные процедуры фильтрации приводят к наивысшему качеству обработки и, следовательно, являются абсолютно оптимальными.
Отметим, однако, с самого начала основные недостатки байесовской фильтрации изображений. Первый является общим для байесовских методов вообще и заключается в очень высоких требованиях к объему и характеру данных, содержащихся в математических моделях сигналов и помех, удовлетворить которым на практике удается далеко не всегда.
Второй связан со спецификой изображений как двумерных сигналов, что приводит к колоссальным вычислительным трудностям при попытке прямого использования этого подхода. Последнее делает актуальной разработку таких методов, которые способны преодолеть данное ограничение. Достичь этого обычно удается ценой определенной потери качества обработки. Поэтому дело сводится к поиску таких методов, при которых потеря качества являлась бы приемлемой.
3.5.1. Сущность байесовской фильтрации
Полагаем, что на входе фильтра действует сигнал


где










куда входит распределение




Поскольку потребителя информации обычно интересует точечное значение сигнала

Оперировать векторными величинами, входящими в (3.38), практически невозможно из-за громадной размерности векторов










Отмеченная сложность байесовских процедур свойственна и фильтрации одномерных сигналов. Вместе с тем, в области одномерной фильтрации были получены блестящие решения проблемы, основанные на использовании марковских моделей сигналов и помех. В указанных работах [3.4-3.6] предпринимались разнообразные попытки распространить идеи марковской фильтрации на двумерные сигналы. Прежде чем остановиться на одном из методов, развитых в работах [3.6,3.8], рассмотрим кратко одномерную марковскую фильтрацию дискретных сигналов, поскольку она составляет основу двумерных процедур.
3.5.2. Марковская фильтрация одномерных последовательностей
Рассмотрим одномерную задачу фильтрации, когда входные данные представлены в виде одномерной последовательности наблюдений:

Здесь все обозначения имеют тот же смысл, что и в (3.37) для двумерных сигналов. Для пояснения сути марковской фильтрации рассмотрим простейший вариант задачи: будем считать помеху независимым процессом (т.е.

На пояснении последнего остановимся подробнее. Последовательность является марковской, если ее совместное распределение вероятностей может быть представлено в виде:

Данное выражение содержит в правой части одномерное распределение





Часто индексы




В соотношение (3.41) входит распределение последнего элемента и цепочка одношаговых распределений перехода в обратном времени


Марковские процессы обладают разделяющим свойством, позволяющим представить их распределение еще в одной форме, полезной для разработки оптимальных процедур фильтрации. В соответствии с этим свойством любой элемент последовательности





Последнее соотношение дает возможность построения некаузального фильтра, формирующего результат фильтрации при помощи очень удобных, экономичных вычислительных процедур.
Это является результатом того, что апостериорное распределение вероятностей для произвольного


В правую часть (3.43) входят три частичных АРВ элемента






Согласно (3.43) получение оценки складывается из двух этапов. На первом этапе из локальных входных данных формируются локальные АРВ, которые на втором этапе объединяются в окончательное АРВ, используемое далее для получения точечной оценки. Вычислительная сложность этого процесса в значительной степени определяется сложностью формирования локальных АРВ, главным образом находящихся в числителе формулы (3.43), т.к. получение одноточечного АРВ в знаменателе обычно является достаточно простой задачей.
Определение локальных АРВ очень сильно облегчается при использовании марковских свойств последовательностей. Оказывается, что они могут вычисляться при помощи рекуррентных соотношений. Так, например АРВ


Здесь






Аналогично выглядит и рекуррентное соотношение для локального АРВ



В целом, процедура фильтрации, основанная на приведенных соотношениях, выглядит следующим образом. Сначала выполняется обработка последовательности в прямом времени, в результате чего во всех точках формируется АРВ




3.5.3. Двухэтапная марковская фильтрация изображений
Рассмотрим подход к фильтрации изображений, основу которого составляет использование двумерных, но неполных входных данных, а также наличие у них марковских свойств. Рассмотрим получение оценки изображения в произвольной точке кадра с координатами

Будем считать, что для получения оценки





Рис. 3.8 иллюстрирует геометрию задачи.
![]() |
|
Рис. 3.8. Геометрия использования данных при двухэтапной фильтрации |




Будем, кроме того, рассматривать такие случайные поля




где верхние индексы также указывают на принадлежность векторов соответствующим лучам. Соотношение (3.45) означает, что значения сигнала на любой строке и на любом столбце изображения условно независимы, если известно значение сигнала




Используя эту математическую модель изображения в случае независимой помехи


Соотношение (3.47) служит теоретической базой для построения оптимальных двухэтапных процедур фильтрации, использующих неполные данные исходных наблюдений. Полное АРВ, основанное на всех привлекаемых при фильтрации данных




Рассмотренный вариант обработки является разновидностью некаузальной фильтрации, поскольку в получении оценки участвуют элементы входного наблюдения, имеющие как большие, так и меньшие значения аргументов, чем у оцениваемого сигнала.
Если в процессе обработки опираться только на данные двух лучей





Соотношение (3.47) дает возможность выполнить двумерную обработку изображения в виде некоторой совокупности одномерных процедур. Весь цикл вычислений можно представить следующим образом. Выполняется обработка всех строк изображения в прямом направлении (слева направо), в результате чего в каждой точке образуется распределение






С точки зрения скорости вычислений данная технология обработки является очень привлекательной. Следует, вместе с тем, иметь в виду, что для ее реализации необходим достаточный запас оперативной памяти, чтобы хранить промежуточные результаты обработки, к числу которых относятся все частные АРВ. В этом отношении вычислительный процесс может быть существенно оптимизирован, поскольку ни одно из частных АРВ не представляет окончательной ценности. Это позволяет, например, не хранить отдельно пять различных распределений, входящих в правую часть (3.47), а по мере получения очередного сомножителя формировать произведение, именно которое и следует хранить в памяти до завершения вычислений. Очевидно, что структура вычислений, как и в одномерном случае, удобна для реализации при помощи многоканального вычислительного устройства.
Структура распределений очень сильно влияет на требуемые объем вычислений и ресурс памяти. Имеются очень “удобные” в этом смысле виды распределений. Например, если для описания изображения применима модель случайного поля с гауссовским распределением, то для представления каждого из частных и финального АРВ в (3.47) требуется наличие всего двух параметров - математического ожидания и дисперсии. Именно это и определяет конкретный характер и количество вычислений в процессе фильтрации, а также объем необходимой памяти.
Другим примером такого рода может служить математическая модель бинарного случайного поля, которое в различных точках принимает значения




Существует отдельный вопрос, связанный с применимостью марковских двумерных моделей (3.45), (3.46), позволяющих построить эффективные двухэтапные процедуры. Его изучение является достаточно непростой теоретической задачей. В частности, в работах [3.6.,3.8] установлено, что и для гауссовских, и для бинарных случайных полей необходимым и достаточным условием применимости (3.45) является возможность представления двумерных корреляционных функций этих полей в разделимом виде, т.е. в виде произведения двух множителей, один из которых описывает корреляцию изображения по строке, а второй - по столбцу. Дополнительные требования, вытекающие из (3.46), сводятся к существованию марковских свойств у одномерных последовательностей в горизонтальном и вертикальном сечениях изображения. В двух указанных примерах наличие таких свойств связано с экспоненциальным видом корреляционных функций этих одномерных сечений изображения.
На рис. 3.9 приведены результаты экспериментальной проверки двумерных двухэтапных алгоритмов фильтрации изображения. На рис. 3.9.а показано тестовое бинарное изображение “острова”, на рис. 3.9.б - изображение, искаженное белым гауссовским шумом (отношение сигнал/шум

Рис.3.9. в иллюстрирует применение простой поэлементной пороговой обработки (рис. 1.4.а), при которой порог определялся так, чтобы реализовывалась одноточечная процедура максимума апостериорной вероятности. На рис. 3.9.г, 3.9.д и 3.9.е показаны различные результаты двухэтапной фильтрации. Первый из них соответствует одномерной каузальной фильтрации, второй - также одномерной, но некаузальной, а третий - двумерной некаузальной процедуре. Визуальное сравнение результатов говорит об очень низком качестве поэлементной обработки. При ее использовании вероятность
![]() |
![]() |
![]() |
|
а) |
б) |
в) |
![]() |
![]() |
![]() |
|
г) |
д) |
е) |
|
Рис. 3.9. Двухэтапная марковская фильтрация изображения |


3.6. Медианная фильтрация
Все линейные алгоритмы фильтрации приводят к сглаживанию резких перепадов яркости изображений, прошедших обработку. Этот недостаток, особенно существенный, если потребителем информации является человек, принципиально не может быть исключен в рамках линейной обработки. Дело в том, что линейные процедуры являются оптимальными при гауссовском распределении сигналов, помех и наблюдаемых данных. Реальные изображения, строго говоря, не подчиняются данному распределению вероятностей.
Причем, одна из основных причин этого состоит в наличии у изображений разнообразных границ, перепадов яркости, переходов от одной текстуры к другой и т. п.. Поддаваясь локальному гауссовскому описанию в пределах ограниченных участков, многие реальные изображения в этой связи плохо представляются как глобально гауссовские объекты. Именно это и служит причиной плохой передачи границ при линейной фильтрации.
Вторая особенность линейной фильтрации - ее оптимальность, как только что упоминалось, при гауссовском характере помех. Обычно этому условию отвечают шумовые помехи на изображениях, поэтому при их подавлении линейные алгоритмы имеют высокие показатели. Однако, часто приходится иметь дело с изображениями, искаженными помехами других типов. Одной из них является импульсная помеха. При ее воздействии на изображении наблюдаются белые или (и) черные точки, хаотически разбросанные по кадру. Применение линейной фильтрации в этом случае неэффективно - каждый из входных импульсов ( по сути - дельта-функция) дает отклик в виде импульсной характеристики фильтра, а их совокупность способствует распространению помехи на всю площадь кадра.
Удачным решением перечисленных проблем является применение медианной фильтрации, предложенной Дж. Тьюки в 1971 г. для анализа экономических процессов. Наиболее полное исследование медианной фильтрации применительно к обработке изображений представлено в сборнике [3.9]. Отметим, что медианная фильтрация представляет собой эвристический метод обработки, ее алгоритм не является математическим решением строго сформулированной задачи. Поэтому исследователями уделяется большое внимание анализу
эффективности обработки изображений на ее основе и сопоставлению с другими методами.
При применении медианного фильтра (МФ) происходит последовательная обработка каждой точки кадра, в результате чего образуется последовательность оценок. В идейном отношении обработка в различных точках независима (этим МФ похож на масочный фильтр), но в целях ее ускорения целесообразно алгоритмически на каждом шаге использовать ранее выполненные вычисления.
При медианной фильтрации используется двумерное окно (апертура фильтра), обычно имеющее центральную симметрию, при этом его центр располагается в текущей точке фильтрации. На рис. 3.10 показаны два примера наиболее часто применяемых вариантов окон в виде креста и в виде квадрата. Размеры апертуры принадлежат к числу параметров, оптимизируемых в процессе анализа эффективности алгоритма. Отсчеты изображения, оказавшиеся в пределах окна, образуют рабочую выборку текущего шага.
![]() |
![]() |
|
а) |
б) |
|
Рис. 3.10. Примеры окон при медианной фильтрации |





Рассмотрим пример. Предположим, что выборка имеет вид:




Видим, что влияние “соседей” на результат фильтрации в текущей точке привело к “игнорированию” импульсного выброса яркости, что следует рассматривать как эффект фильтрации. Если импульсная помеха не является точечной, а покрывает некоторую локальную область, то она также может быть подавлена. Это произойдет, если размер этой локальной области будет меньше, чем половина размера апертуры МФ. Поэтому для подавления импульсных помех, поражающих локальные участки изображения, следует увеличивать размеры апертуры МФ.
Из (3.48) следует, что действие МФ состоит в “игнорировании” экстремальных значений входной выборки - как положительных, так и отрицательных выбросов. Такой принцип подавления помехи может быть применен и для ослабления шума на изображении. Однако исследование подавления шума при помощи медианной фильтрации показывает, что ее эффективность при решении этой задачи ниже, чем у линейной фильтрации [3.9].
Результаты экспериментов, иллюстрирующие работу МФ, приведены на рис. 3.11. В экспериментах применялся МФ, имеющий квадратную апертуру со
стороной равной 3. В левом ряду представлены изображения, искаженные помехой, в правом - результаты их медианной фильтрации. На рис. 3.11.а и рис. 3.11.в показано исходное изображение, искаженное импульсной помехой. При ее наложении использовался датчик случайных чисел с равномерным на интервале [0, 1] законом распределения, вырабатывающий во всех точках кадра независимые случайные числа. Интенсивность помехи задавалась вероятностью







![]() |
![]() |
|
а) |
б) |
![]() |
![]() |
|
в) |
г) |
![]() |
![]() |
|
д) |
е) |
|
Рис. 3.11. Примеры медианной фильтрации |
Рис. 3.11. д показывает изображение, искаженное независимым гауссовским шумом при отношении сигнал/шум



|
масочный фильтр с оптимальн. КИХ |
масочный фильтр с равномерн. КИХ |
двумерный рекуррентн. фильтр |
двумерный фильтр Винера |
медианный фильтр |
|
![]() |
0.309 |
0.395 |
0.29 |
0.186 |
0.539 |
![]() |
10.2 |
8.0 |
10.9 |
17.0 |
5.86 |
Табл.3.1. Сравнение эффективности подавления шума при фильтрации изображений, ![]() |

Вместе с тем, как говорилось выше, и что демонстрирует рис. 3.11.е, медианная фильтрация в меньшей степени сглаживает границы изображения, чем любая линейная фильтрация. Механизм этого явления очень прост и заключается в следующем. Предположим, что апертура фильтра находится вблизи границы, разделяющей светлый и темный участки изображения, при этом ее центр располагается в области темного участка. Тогда, вероятнее всего, рабочая выборка будет содержать большее количество элементов с малыми значениями яркости, и, следовательно, медиана будет находиться среди тех элементов рабочей выборки, которые соответствуют этой области изображения. Ситуация меняется на противоположную, если центр апертуры смещен в область более высокой яркости.
Восстановление изображений
Из-за несовершенства формирующих и регистрирующих систем записанное ими изображение представляет собой искаженную (нечеткую) копию оригинала. Основными причинами искажений, приводящих к ухудшению четкости, являются ограниченная разрешающая способность формирующей системы, расфокусировка, наличие искажающей среды (например, атмосферы), движение камеры по отношению к регистрируемому объектуи т.п. Устранение или ослабление искажений с целью повышения резкости относится к задаче восстановления изображений.
Наиболее общая схема формирования изображения представлена на рис. 4.1,

Рис.4.1. Схема формирования изображения

где






Вид оператора






4.1. Модели изображений и их линейных искажений
4.1.1. Формирование изображений
Большинство формирующих систем в первом приближении можно рассматривать как линейные и инвариантные к сдвигу. Изображения, сформированные такими системами, претерпевают линейные пространственно-инвариантные искажения,
характеризующиеся тем, что механизм их возникновения один и тот же для всех точек

С учетом вышеизложенного наблюдаемое нерезкое изображение


Рис.4.2. Линейная модель формирования изображения
а математическая модель процесса его формирования имеет вид:

где



где





В выражении (4.1) учтено, что изображения, встречающиеся в практических задачах, имеют конечные размеры. Это означает, что яркость изображения полагается равной нулю всюду, кроме некоторой конечной области, которую будем называть кадром и обозначать через








Относительные размеры кадров изображений и ФРТ в модели формирования (4.1) имеют важное значение. Как будет показано ниже, конечность их размеров значительно усложняет решение задачи восстановления. Размеры кадров




Рис.4.3. Относительные размеры изображения и ФРТ
Кадр










Поэтому даже если регистрируемый объект имеет бесконечные размеры наблюдаемое изображение формируется лишь только за счет некоторой его части. Причем размеры кадра наблюдаемого изображения всегда меньше или равны размерам исходного. Размеры кадров исходного и наблюдаемого изображений равны лишь при отсутствии линейных искажений, т.е. когда импульсная характеристика искажающей системы равна дельта-функции. Нас будет интересовать восстановление изображения в пределах кадра




Для изображений, представленных в цифровой форме, двумерные функции








где

Аргументы с индексом 1 обозначают номер строки, а с индексом 2 - номер столбца. В дискретном случае размеры кадра (число отсчетов)



Операция свертки, которая имеется в формулах (4.1) и (4.4), эквивалентна произведению в частотной области. Это позволяет выполнить быструю имитацию линейных искажений с помощью ДПФ, заменив обычную свертку циклической (смотри главу 3). Как правило, размеры кадра ФРТ много меньше размеров кадра исходного изображения, поэтому перед преобразованием массив

Спектр линейно-искаженного изображения





где








Рассмотрим импульсные и частотные характеристики формирующих систем при смазе и расфокусировке.
4.1.2. Размытие вследствие движения (смаз)
Смаз изображения возникает при взаимном движении камеры и объекта относительно друг друга во время экспозиции. Наблюдаемое изображение окажется как бы результатом наложения со смещением множества исходных изображений. Мы рассмотрим только тот случай, когда камера перемещается с постоянной горизонтальной скоростью относительно снимаемого объекта. ФРТ и передаточная функция такой системы определяются выражениями:


где длина смаза


где размеры кадра


![]() |
![]() |
|
Рис.4.4. Взаимное расположение изображения и ФРТ при смазе |
Рис.4.5. Изображние модуля частотной характеристики искажающей системы |

Изображение модуля



На рис.4.7 приведен искаженный вариант исходного изображения «Сатурн» (рис.4.6). Горизонтальный смаз составляет 15 элементов. Исходное изображение содержит


![]() |
![]() |
|
Рис.4.6.Исходное изображение “Сатурн” |
Рис.4.7. Смазанное изображение “Сатурн” |
Четкость изображения характеризуется воспроизведением мелких деталей и определяется разрешающей способностью формирующей системы. Разрешающая способность, например, оптической системы численно выражается количеством пар черно-белых линий на 1 мм изображения, которое формируется объективом системы. Если плоскость формируемого изображения находится в фокусе объектива, то пучок лучей, исходящий от точки на объекте, сходится в точку на изображении. При расфокусировке точка воспроизводится в виде некоторого пятна (кружка размытия), и две близко расположенные точки на исходном изображении сливаются в одну на наблюдаемом. Величина кружка размытия зависит от фокусного расстояния объектива, а также от расстояний от объектива до объекта и до плоскости формируемого изображения [4.1]. Дискретное изображение будет четким (сфокусированным), если диаметр кружка размытия не превышает шага дискретизации

При расфокусировке распределение интенсивности на изображении точечного источника, формируемого тонкой линзой с круговой апертурой, постоянно в пределах кружка размытия радиусом


Из (4.8) следует, что размеры кадра


где

В дискретном случае ФРТ (4.8) имеет вид:

На рис.4.8 и 4.9 показаны ФРТ для тонкой линзы (4.10) и модуль ее передаточной функции при радиусе кружка размытия


![]() |
![]() |
|
Рис.4.8. ФРТ тонкой линзы |
Рис.4.9. Изображение модуля частотной характеристики тонкой линзы |
Земную атмосферу также можно рассматривать как оптическую систему. В качестве приближенной модели ФРТ такой системы используется двумерный гауссовский импульс

который в дискретном случае имеет вид

где



Очевидно, что точки, для которых выполняется условие (4.2), образуют круг радиусом

Следовательно, чем больше


![]() |
![]() |
|
Рис.4.10. ФРТ атмосферы Земли |
Рис.4.11. Изображение модуля частотной характеристики атмосферы Земли |
![]() |
|
Рис.4.12. Дефокусированное изображение “Сатурн” |


Таким образом,
можно выделить три основных фактора, которые существенно усложняют решение проблемы восстановления изображений.
1. Искажения типа расфокусировка или смаз проявляются в ослаблении верхних пространственных частот изображения, т.к. формирующие системы представляют собой фильтры нижних частот. При этом отношение сигнал/шум на верхних частотах, определяющих четкость изображения, будет значительно хуже, чем для изображения в целом.
Если система, формирующая изображение, ослабляет сигнал на каких-то пространственных частотах, то при восстановлении он должен быть усилен в той мере, в какой был ослаблен. Вместе с сигналом будут усиливаться и шумы. Поэтому улучшение качества изображения по резкости может привести к ухудшению его качества по зашумленности.
2. Яркость на краях кадра искаженного изображения зависит от яркости объектов, расположенных вне кадра, за счет свертки исходного изображения с ФРТ. При восстановлении изображений из-за неполной информации о сигнале вне кадра возникают краевые эффекты. Влияние краевых эффектов на качество восстановления в ряде случаев оказывается даже более существенным, чем зашумленность изображения.
3. При искажениях, вызванных движением или расфокусировкой камеры, передаточные функции (4.7) и (4.9) имеют нули, наличие которых обусловлено осциллирующим характером передаточных функций. Поскольку спектр искаженного изображения равен произведению спектра исходного изображения и передаточной функции (см. (4.5)), то наличие нулей приводит к полной утрате данных об исходном изображении на соответствующих частотах. По этой причине не удается абсолютно точно восстановить исходное изображение по наблюдаемому изображению, даже если отсутствуют шумы наблюдения и размеры кадров неограничены.
При решении задач восстановления изображений используются различные алгоритмы, как имеющие строгое математическое обоснование, так и эмпирические. Для искажений, описываемых уравнением свертки, эти алгоритмы условно можно разделить на три основные группы: алгоритмы решения системы алгебраических уравнений, алгоритмы фильтрации изображений в частотной области и итерационные алгоритмы.
4.2. Алгебраические методы восстановления изображений
Соотношение (4.4) для цифровых изображений фактически представляет собой систему линейных алгебраических уравнений относительно



Удобно представить соотношения (4.3) и (4.4) в матричной форме, используя лексикографическое упорядочивание. Для этого двумерный массив наблюдаемого изображения
















где искаженное изображение

Символ





Если шумами наблюдения можно пренебречь, то задача восстановления изображения сводится к нахождению оценки (решения)


Если бы



Однако матричное уравнение (4.16) представляет собой недоопределенную
систему линейных алгебраических уравнений, т.к. количество неизвестных





Среди всех возможных решений недоопределенной разрешимой системы (4.16) в качестве оценки


где



где

Точное восстановление исходного изображения при отсутствии шумов возможно, во-первых, когда искаженное изображение получено в результате циклической свертки исходного изображения и ФРТ. Во-вторых, когда объекты исходного изображения расположены в центре кадра и наблюдаются на фоне постоянной яркости, причем расстояние от объектов до границ кадра больше апертуры ФРТ. В том и другом случаях число неизвестных будет равно числу уравнений, т.к. объекты, расположенные вне кадра, не будут влиять на яркость наблюдаемого изображения. Иными словами, точное восстановление при отсутствии шума возможно тогда, когда ограничение размеров кадра наблюдаемого изображения не приводит к потере информации об исходном изображении.
Для искаженных изображений, наблюдаемых в присутствии шумов, к элементам вектора-столбца



В этом случае оптимальным оператором (в смысле критерия наименьших квадратов (4.21)), формирующим оценку



Таким образом, в обоих рассмотренных случаях обобщенное обращение матриц дает оптимальное решение, удовлетворяющее критериям наименьших квадратов (4.19) или (4.21).
Следует подчеркнуть, что, несмотря на одинаковые названия, по сути это два разных критерия. Для разрешимой недоопределенной системы (4.16)) (когда выбирается одно решение из множества возможных) ошибка


Основным недостатком алгебраических алгоритмов восстановления изображений является необходимость выполнения трудоемких операций обращения, умножения и транспонирования матриц огромных размеров. Напомним, что размер матрицы

4.3. Методы восстановления изображений на основе
пространственной фильтрации
Методы восстановления изображений, которые будут рассмотрены в данном разделе, реализуются с помощью ДПФ в частотной области. При этом обычная свертка заменяется циклической как в модели формирования искаженного изображения (4.4), так и в процедуре восстановления методом пространственной фильтрации. Все изображения





При циклической свертке модель (4.4) формирования искаженного изображения определяется соотношением

где

Применяя к (4.22) ДПФ, получим

Система восстановления изображений на основе пространственной фильтрации представляет собой линейный пространственно-инвариантный двумерный фильтр. На выходе этого фильтра формируется оценка

исходного изображения


4.3.1. Инверсный фильтр
Простейшим способом восстановления четкости изображения является обработка наблюдаемого изображения в пространственно-частотной области инверсным фильтром [4.5]. Передаточная функция инверсного восстанавливающего фильтра определяется соотношением


Она выбирается из условия


Таким образом, восстановленное изображение равно сумме исходного изображения и шума наблюдения, прошедшего через инверсный фильтр. При отсутствии шума достигается точное восстановление инверсным фильтром исходного изображения


На рис. 4.13. и 4.14 приведены результаты восстановления изображений «Часы» и «Сатурн» инверсным фильтром: а) исходные изображения размером



Восстановить изображение «Часы» инверсным фильтром не удается из- за краевых эффектов. Практически идеальное восстановление изображения «Сатурн» объясняется тем, что объекты наблюдаются на фоне постоянной яркости и расположены в центре кадра. В этом случае изображения


На рис. 4.15 и 4.16 приведены сечения типичных частотных характеристик ФРТ и соответствующих им инверсных фильтров, из которых следует, что модуль передаточной функции формирующей системы, как правило, стремится к нулю на высоких частотах. Кроме того, нули в передаточной функции имеются в рабочей полосе частот при расфокусировке камеры (4.10) и смазе (4.6). В этом случае инверсный фильтр является сингулярным, т.к. модуль его передаточной функции становится бесконечно большим на пространственных частотах, соответствующих нулевым значениям модуля передаточной функции искажающей системы. Причем наличие даже относительно слабого шума приводит к появлению интенсивных шумовых составляющих на выходе инверсного фильтра, полностью разрушающих изображение. Этот факт иллюстрируется рис.4.17. К дефокусированному изображению «Сатурн» (рис. 4.14.б) был добавлен аддитивный дельта-коррелированный шум. Из восстановленного изображения видно, что даже при пренебрежимо малом уровне шума (отношение сигнал/шум

![]() |
![]() |
|
а) |
б) |
![]() |
|
|
в) |
|
|
Рис.4.13. Результаты восстанвления изображения “Часы” |
![]() |
![]() |
|
а) |
б) |
![]() |
|
|
в) |
|
|
Рис.4.14. Результаты восстанвления изображения “Сатурн” |
![]() |
![]() |
||
![]() |
![]() |
||
|
Рис.4.15. Частотные характеристики искажающей системы с цилиндрической ФРТ и инверсного фильтра |
Рис.4.16. Частотные характеристики искажающей системы с гауссовской ФРТ и инверсного фильтра |
||
![]() |
|||
Рис.4.17. Результат восстановления изображения “Сатурн” при ![]() |
|||
Существуют частные методы ослабления шумов, которые заключаются в ограничении полосы инверсного фильтра. Последовательно с инверсным фильтром включается корректирующее звено, модуль передаточной функции которого стремится к нулю за пределами некоторой наперед заданной граничной частоты. При этом граничная частота выбирается из компромисса между снижением уровня шума и четкостью восстановленного изображения. Однако эти методы не решают проблем краевых эффектов и наличия нулей передаточной функции формирующей системы в рабочем диапазоне частот.
Таким образом, несмотря на очевидную простоту метода инверсной фильтрации, он может успешно использоваться для восстановления ограниченного класса изображений, у которых уровень фона на краях постоянен. Кроме того, метод инверсной фильтрации обладает чрезвычайно низкой помехоустойчивостью.
4.3.2. Фильтр Винера
Инверсная фильтрация обладает низкой помехоустойчивостью, потому что этот метод не учитывает зашумленность наблюдаемого изображения. Значительно менее подвержен влиянию помех и сингулярностей, обусловленных нулями передаточной функции искажающей системы, фильтр Винера (смотри главу 3), т.к. при его синтезе наряду с видом ФРТ используется информация о спектральных плотностях мощности изображения и шума. При этом полагается, что изображение является реализацией случайного двумерного поля. Частотная характеристика восстанавливающего фильтра Винера, полученная для периодически продолженных изображений, с учетом (2.34) имеет вид [4.6]

где





Преобразуем передаточную функцию фильтра Винера (4.28) следующим образом:

Анализируя соотношения (4.28) и (4.29), можно отметить следующее:
1. При отсутствии шума фильтр Винера переходит в инверсный фильтр. Следовательно, в области низких частот, где, как правило, отношение сигнал/шум велико, передаточные функции инверсного и винеровского фильтров практически совпадают.
2. При уменьшении спектральной плотности мощности исходного изображения передаточная функция фильтра Винера стремится к нулю. Для изображений это характерно на верхних частотах.
3. На частотах, соответствующих нулям передаточной функции формирующей системы, передаточная функция фильтра Винера также равна нулю. Таким образом решается проблема сингулярности восстанавливающего фильтра.
На рис. 4.18 приведены одномерные сечения типичных передаточных функций винеровских фильтров (сплошная линия). Здесь же для сравнения приведены сечения передаточных функций инверсных фильтров (4.15) и (4.16), которые обозначены штриховой линией.
![]() |
![]() |
|
Рис.4.18. Частотный характеристики фильтра Винера при цилиндрической и гауссовской ФРТ |





![]() |
![]() |
|
а) |
б) |
Рис.4.19. Восстановление дефокусированного изображения “Сатурн” при ![]() |
![]() |
![]() |
|
а) |
б) |
Рис.4.20. Восстановление смазанного изображения “Сатурн” при ![]() |

Осциллирующая помеха на результатах восстановления изображения «Часы» (рис. 4.21.б и рис.4.22.в) вызвана краевыми эффектами. Очевидно, что ее уровень существенно меньше, чем при инверсной фильтрации (см. рис.4.13.в). Однако винеровский фильтр лишь частично компенсирует краевые эффекты, которые делают качество восстановления неудовлетворительным.
![]() |
![]() |
|
а) |
б) |
Рис.4.21. Восстановление дефокусированного изображения “Часы” при ![]() |
|
![]() |
![]() |
|
а) |
б) |
![]() |
|
|
в) |
|
Рис.4.22. Восстановление смазанного изображения “Часы” при ![]() |
4.3.3. Компенсация краевых эффектов при
восстановлении линейно-искаженных изображений
На восстановленных изображениях, приведенных на рис.4.13.в, 4.21.б и 4.22.в, присутствует осциллирующая помеха большой интенсивности, которая возникает из-за того, что инверсный фильтр и фильтр Винера были синтезированы без учета ограниченных размеров наблюдаемых изображений. Вследствие того, что искаженное изображение записывается в кадре конечного размера, в усеченном изображении происходит потеря информации, содержащейся в исходном изображении вблизи границ. Поэтому при коррекции линейных искажений усеченного изображения возникают ложные детали в виде ряби или полос, интенсивность которых особенно велика при цилиндрической форме ФРТ и равномерном смазе.
К сожалению, решить уравнение Винера-Хопфа для сигналов и изображений, наблюдаемых на ограниченном интервале, не удается. Поэтому отсутствуют оптимальные пространственно-инвариантные фильтры, учитывающие краевые эффекты. Для компенсации краевых эффектов используются различные эвристические алгоритмы.
Некоторые из них будут рассмотрены в данном подразделе.
Если нас интересует центральная часть изображения и его размеры значительно больше размеров кадра ФРТ, то для компенсации краевых эффектов применяют умножение наблюдаемого изображения на функцию окна


При дефокусировке функция окна является разделимой относительно пространственных координат:


Хорошие результаты дает функция окна [4.8]

форма которой определяется двумя независимыми параметрами




На рис 4.23 и 4.24 приведены результаты восстановления изображения «Часы» при горизонтальном смазе, где а - результаты умножения строк искаженного изображения, приведенного на рис.4.22.б, на окно Кайзера и окно (4.30); б - результаты восстановления фильтром Винера. Параметры окон подбирались, исходя из визуального качества восстанавливаемых изображений.
Уровень яркости на краях изображений, умноженных на окно, стремится к нулю, поэтому вместе с уменьшением краевых эффектов сужаются границы восстанавливаемого изображения. Кроме того, оптимальные параметры окон зависят от параметров искажающей системы и определяются опытным путем, что затрудняет практическое применение алгоритмов восстановления.
Учесть ограниченные размеры наблюдаемого изображения можно на этапе синтеза фильтра Винера, который использует информацию о спектрально-корреляционных характеристиках изображения. Получение изображения ограниченных размеров эквивалентно умножению бесконечного изображения на окно единичной яркости, размеры которого равны размерам кадра

Очевидно, что спектрально- корреляционные характеристики такого усеченного изображения будут отличаться от аналогичных характеристик бесконечных изображений. Корреляционная функция усеченного изображения может быть получена путем умножения на окно
![]() |
![]() |
|
а) |
б) |
|
Рис. 4.23. Восстановление с использованием окна Кайзера |
|
![]() |
![]() |
|
а) |
б) |
|
Рис. 4.24. Восстановление с использованием окна (4.30) |

корреляционной функции неограниченного изображения [4.9]. В этом случае спектральная плотность мощности усеченного изображения равна свертке спектральной плотности мощности неограниченного изображения и спектральной плотности окна (4.31). Подставляя соответствующие спектральные плотности мощности в уравнение Винера-Хинчина и решая его, получим коэффициент передачи фильтра для усеченного изображения [4.10]

где

На рис. 4.25 приведен результат восстановления изображения «Часы» фильтром (4.32), откуда следует, что фильтр (4.32) практически полностью компенсирует краевые эффекты. Это позволяет отказаться от предварительной обработки. Качество восстановления изображения в центре и на краях почти одинаковое. Параметры фильтра (4.32) полностью определяются исходными данными и не требуют дополнительной подстройки. При использовании быстрого преобразования Фурье для обработки изображений объем вычислений при реализации фильтра (4.32) такой же, как и для фильтра Винера (4.28).
![]() |
|
Рис.4.25. Результат восстановления с компенсацией краевых эффектов |




Простейшей является процедура одномерной экстраполяции. Яркость изображения вдоль строк и столбцов за пределами кадра наблюдаемого изображения


Коэффициенты




![]() |
![]() |
|
а) |
б) |
|
Рис. 4.26. Восстановление с применением экстраполяции |
Улучшить качество восстановления можно, используя одновременно экстраполяцию наблюдаемого изображения и фильтра (4.32). Результат такой комбинированной процедуры приведен на рис 4.27. Рассмотренные методы восстановления являются линейными. Их широкое использование обусловлено достаточно простыми методами синтеза и анализа линейных систем, а также высокой вычислительной эффективностью. Однако эти методы не являются оптимальными и не всегда обеспечивают эффективную компенсацию искажений. Линейная обработка является лишь приближением к оптимальной обработке, т.к. статистические характеристики подавляющего большинства изображений являются негауссовскими.
Кроме того, линейные методы не учитывают априорные данные о восстанавливаемых изображениях. Поэтому интерес представляют нелинейные методы обработки изображений. Синтез оптимальных нелинейных алгоритмов, как правило, значительно сложнее, чем линейных. Однако существуют линейные методы восстановления, которые достаточно просто могут быть преобразованы в нелинейные, учитывающие априорные данные об изображениях и помехах. Ярким примером таких методов являются итерационные методы (методы последовательных приближений).

Рис.4.27. Восстановление с использованием экстраполяции и
компенсации краевых эффектов
4.4. Итерационные методы восстановления изображений
Итерационными методами называют способы решения задач, в которых, выбирая некоторое начальное приближенное решение, вычисляют следующие, более точные приближения, используя предыдущие.
Рассмотрим один из способов построения итерационных процедур, основанный на разложении в ряд частотной характеристики инверсного фильтра [4.6]. Спектр оценки исходного изображения при инверсной фильтрации определяется соотношением

Представим передаточную функцию инверсного фильтра


Подставляя (4.34) в (4.33), получим

Соотношение (4.35) позволяет представить процедуру нахождения оценки






где каждое последующее приближение вычисляется по предыдущему. Взяв преобразование Фурье от соотношений (4.36), получим итерационную процедуру Ван Циттера [4.11]:

(4.37)

которую можно интерпретировать как процедуру последовательного нахождения поправок




В итерационном алгоритме (4.37) нахождение обратного оператора заменяется на многократное вычисление свертки.
При использовании итерационных алгоритмов необходимо знать ответы на два вопроса - сходится ли он и, если сходится, то к какому решению. Сходимость алгоритма (4.37) к решению (4.33) определяется сходимостью ряда бесконечной геометрической прогрессии (4.34). Этот ряд сходится при


Условие (4.38) выполняется для гауссовской ФРТ. При цилиндрической ФРТ и равномерном смазе соотношение (4.33) заменяют на эквивалентное соотношение

Тогда итерационный алгоритм (4.37) имеет вид [4.6]

(4.39)

где




Очевидно, что рассмотренный итерационный алгоритм является линейным и не имеет никаких преимуществ по сравнению с линейными алгоритмами. Однако этот метод позволяет эффективно бороться с краевыми эффектами и чрезмерным усилением шумов при восстановлении изображений. Итеративный процесс всегда можно остановить, если шум и осциллирующая помеха на изображении резко усиливаются. Остановка итеративного процесса означает усечение ряда (4.34), что приводит к ограничению коэффициента усиления за пределами некоторой граничной частоты. С увеличением длины ряда возрастают граничная частота и коэффициент усиления фильтра. Этот эффект иллюстрируется рис. 4.28, где приведены одномерные сечения частотных характеристик фильтров при 10-ти и 15-ти слагаемых в ряде (4.34) (сплошные линии). Здесь же для сравнения приведено одномерное сечение частотной характеристики инверсного фильтра (штриховая линия).

Рис. 4.28. Частотные характеристики итерационного фильтра на разных шагах
На рис 4.29 приведены результаты восстановления изображения «Часы», где а и б - повторно приведенные исходное (рис.4.22.а) и искаженное в результате смаза (рис 4.22.б) изображения; в - восстановленное изображение итерационным алгоритмом (4.37) ( число итераций



![]() |
![]() |
|
а) |
б ) |
![]() |
![]() |
|
в) |
г) |
|
Рис. 4.29. Восстановление изображения “Часы” итерационным алгоритмом |





Наряду с описанными выше свойствами итерационные алгоритмы могут быть легко преобразованы в нелинейные путем введения нелинейных ограничений для восстанавливаемого изображения [4.6, 4.11]. Ограничения формулируются на основе априорных данных о форме или структуре объектов на исходном изображении. К априорным данным относятся такие свойства изображения, как неотрицательность яркости, ее верхний и нижний пределы, минимальная мощность сигнала, ограниченная пространственная и спектральная протяженность и. т.п.
Даже учет такого простейшего ограничения как верхний и нижний пределы значений яркости приводит к значительному улучшению качества восстановления, т.к. среди всех возможных решений выбирается то, которое не имеет сильных осциляций яркости.
Итерационный алгоритм, например (4.39), с ограничением имеет вид

(4.41)

где

Например, если используется оператор ограничения на неотрицательность


Нелинейный итерационный алгоритм (4.41) будет сходится, если сходится линейный алгоритм (4.39) и оператор



Для большинства цифровых изображений диапазон изменения яркости равен












![]() |
![]() |
|
а) |
б) |
![]() |
![]() |
|
в) |
г) |
![]() |
![]() |
|
д) |
е) |
|
Рис. 4.30.Восстановление изображения “Текст” нелинейным итерационным алгоритмом |

Цифровая обработка
ВВЕДЕНИЕ
Многие отрасли техники, имеющие отношение к получению, обработке, хранению и передаче информации, в значительной степени ориентируются в настоящее время на развитие систем, в которых информация имеет характер изображений. Изображение, которое можно рассматривать как двумерный сигнал, является значительно более емким носителем информации, чем обычный одномерный (временной) сигнал. Вместе с тем, решение научных и инженерных задач при работе с визуальными данными требует особых усилий, опирающихся на знание специфических методов, поскольку традиционная идеология одномерных сигналов и систем мало пригодна в этих случаях. В особой мере это проявляется при создании новых типов информационных систем, решающих такие проблемы, которые до сих пор в науке и технике не решались, и которые решаются сейчас благодаря использованию информации визуального характера.
В связи с этим, в вузовских программах появляются дисциплины, направленные на изучение принципов обработки изображений, причем, приоритетное внимание уделяется цифровым методам, привлекательным своей гибкостью. Отсутствие учебной литературы является сильным препятствием данному изучению, что и побудило авторов к написанию пособия. Следует отметить, что ограниченный объем не позволил охватить многие важные аспекты проблемы цифровой обработки изображений. Авторы пособия, читающие курс цифровой обработки изображений в НГТУ и НГУ, исходили из своих представлений о важности тех или иных разделов, а также опирались на многолетний научно-исследовательский и педагогический опыт.
Работа над пособием распределилась следующим образом. Глава 1 написана совместно И.С. Грузманом и А.А. Спектором, главы 2 и 3 - А.А. Спектором, глава 4 - И.С. Грузманом, глава 5 - В.С. Киричуком и Г.И. Перетягиным, глава 6 - В.С. Киричуком и В.П. Косых. При подготовке пособия авторы использовали известные издания в области цифровых методов обработки изображений, а также имеющиеся у них представления об аналогичных дисциплинах, присутствующих в учебных планах ряда высших учебных заведений страны.
Работа с информацией: Cистемы - Технологии - Рынок
- Анализ информационных систем
- Методы информационных систем
- Интернет как информационная система
- Искусственный интеллект в информационных системах
- Обработка информации информационными системами
- Информационные системы в офисе
- Управление информационными системами
- Технологии информационных систем
- Теория информационных систем
- Почта - информационная система
- Outlook и информационные системы
- Информационный рынок
- Информационный рынок - IT
- Технологии информационного рынка
- Безопасность на информационном рынке









































































































































